
Reliable Delivery, TCP
CS168 - Spring 2024

Agenda
● (new) Go-Back-N
● Review
● Worksheet

Reliability
● Best-effort network

○ Need to handle packet loss, corruption, reordering, delays, duplications, etc.

● Building blocks
○ Checksums: detect corruption
○ Feedback: positive/negative feedback from receiver
○ Retransmissions: sender re-sends packets
○ Timeouts: when to resend a packet
○ Sequence numbers: indicate which packets have been received

● Design considerations
○ Window size, nature of feedback, detection of loss, response to loss

Go-Back-N
● Simple (though not advisable algorithm)
● “Sliding window” protocol: sender keeps a window of up to W transmitted but

unACKed packets

● Timer for oldest in-flight packet
● On timeout, resend all W packets (starting with the lost one)
● Receiver discards out-of-order packets

Kurose Ross, Computer Networking: A Top-down Approach, Chapter 3

Not what TCP does, but useful as a

starting point to figure out
something better.

Window

Go-Back-N w/o Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

Window

Go-Back-N w/o Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

S=5

Window

Go-Back-N w/o Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

S=5
S=6

Window

Go-Back-N w/o Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

S=5
S=6
S=7

A=5

Window

Go-Back-N w/o Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

S=5
S=6
S=7
S=8

A=5

A=7
A=8

A=6

…

Go-Back-N w/ Errors
S=1
S=2
S=3
S=4

A=1
A=2
A=3
A=4

S=5
S=6
S=7
S=8

A=5

A=5
A=5

Packet 6 timeout

S=9

S=6
S=7
S=8
S=9

A=6
A=7
A=8
A=9

Window: {1 2 3 4}
{1 2 3 4}
{1 2 3 4}
{1 2 3 4}

{2 3 4 5}
{3 4 5 6}
{4 5 6 7}
{5 6 7 8}

{6 7 8 9}

Review

TCP
Source
port

Destination
portSequence Number

numberAcknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent
pointerOptions

(variable)
Data

• L4 Protocol (Transport)
• Byte Stream
• Bi-directional
• Reliable
• In-order

TCP Header
Source
port

Destination
portSequence number

Acknowledgment
Advertised windowHdrLen Flags0

Checksum Urgent
pointerOptions

(variable)
Data

• Host port numbers
– Multiplexing and

demultiplexing
– 16 bits

But wait - why no addr?!
– IP header has addr.

TCP Header
Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

• Byte offset
– Of first payload byte
– Initialized randomly

• Byte Stream Protocol
– Seq # refers to bytes

Advertised windowFlags

TCP Header
Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

• Cumulative ACKs
• Seq # of next byte
• Data packets carry

ACKs Advertised windowFlags

TCP Header
Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

• Header length
– 4 bits
– In 4-byte words

• Minimum 5 words
(20B)

• Maximum 15 words
– Why?

Advertised windowFlags

TCP Header
• SYN

– SYNchronize initial state
• ACK

– ACKnowledgement
• FIN

– No more data
• RST

– Connection ReSeT

Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

Advertised windowFlags

TCP Header
• Receive Window Size

– Maximum receiver
buffer

• Limits sending rate
– Don’t send faster than

receiver can process

Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

Advertised windowAdvertised windowFlags

TCP Header
Source
port

Destination
portSequence number

Acknowledgment

HdrLen 0

Checksum Urgent
pointerOptions

(variable)
Data

• Checksum
– Includes header and

payload
• Options common

– Unlike IP
– Not covered
– Assume no options

unless specified

Advertised windowFlags

Connection Establishment

Three Way Handshake
• Client sends server a

SYN
– A TCP packet with the

SYN flag set
• SYN packet carries

initial state
– Receive window
– Source port number
– Initial sequence number

Three Way Handshake
• Server responds with a

SYN-ACK
• Acknowledge the client’s

SYN
• Respond with the

server’s own SYN
• Carries server’s initial

state
– Receive window
– Source port number
– Initial sequence number

Three Way Handshake
• Client responds with

an ACK
• Now the connection is

established!
– Client and server can

freely communicate

Connection Establishment
• Sequence number and acknowledgement number

don’t start from zero
• Instead client and server choose a random initial seq

#
– Why?

• Must be communicated between client and server

Connection Establishment
• Client/Server exchange state

– Initial Sequence numbers
– Port number
– TCP Options

Teardown

Two Teardown Methods
• Four way handshake

– Graceful/normal teardown
• Reset

– Exceptional Teardown

Normal Teardown
• One side closes their connection

– Indicates they will send no more data
– Sends a FIN
– Receives an ACK

• Other side may continue
transmitting

• Eventually it closes as well
– Sends a FIN
– Receives an ACK

• Connection is closed

TCP Reset
• Reset the connection

– Most commonly, attempt to SYN on a closed port
• Send RST packet(s) only (no ACK)

Reliability

Reliability
• Cumulative ACKs

– Allow detection of dropped packets
• How do we know a packet was lost?

– Timeout
– Duplicate ACKs

Timeout
• Retransmission Time Out (RTO)

– Timeout after which packets are retransmitted
– Based on a constantly updated RTT estimate (and variance)

• Single timer (not per-packet)
– Each received ACK of new data resets RTO
– If RTO times out

• Retransmit packet containing “next byte”

Timeout
• What if RTO is too large?
• Packet is dropped . . .

– Wait
– Keep waiting
– … Keep waiting
– Timer goes off

• Finally retransmit
• Can we do better?

Duplicate ACKs
• Transmit

– Seq 1000
– Seq 2000
– Seq 3000 Dropped in flight
– Seq 4000
– Seq 5000
– Seq 6000

• What ACKs do we receive?
– ACK 2000
– ACK 3000
– ACK 3000
– ACK 3000
– ACK 3000

• Duplicate ACKs indicate packet loss/reorder

Worksheet

Q1.1

D400
D200

D700

D1000

D500
D600

D800
D900
D700

A200
A500
A600
A700

A700
A700
A1000
A1100

X

X

X

Q1.2
D100
D200
D300

X A200

Timer start (A200)

A200

D400

A200

.

.

.

TO

D200

A500

Time-out! Retransmit

1 RTT

1 RTT

Q1.2
1 RTT A600

D500

A700

D600
D700

X

Timer start (A700)

A700

D800

A700

D900

D700

A1000

Time-out! Retransmit

TO

1 RTT

.

.

.

Q1.2 1 RTT A1100

D1000

Total Time = RTT + TO + RTT + RTT + TO + RTT + RTT
 = 5 * RTT + 2 * TO
 = 6.05 seconds

Q2.1 & 2.2

Q2.1 & 2.2

Q2.3

Q2.3

Q2.4 & 2.5

Q2.4 & 2.5

Question 3: Reliability ?

Q3: Bob’s Idea
S=1
S=2

S=3
S=4

S=5
S=6
S=7
S=8

A=2

A=4

i = 1

i = 2

i = 3

Q3: Alice’s Idea
S=1
S=2
S=3
S=4

A=2

A=4
...

Q4

Q4

Q5. TCP Short Questions
Discuss with a person next to you.

Q5. TCP Short Questions

Q5. TCP Short Questions

Extra Slides

Estimating RTO

Timeouts and Retransmissions
● Reliability requires retransmitting lost data

● Involves setting timers and retransmitting on timeouts

● TCP only has a single timer

● TCP resets timer whenever new data is ACKed

● Retx packet containing “next byte” when timer expires

● RTO (Retransmit Time Out) is basic timeout value 56

RTT

Setting the Timeout Value (RTO)

1

1

Timeout too long → inefficient

1

1

Timeout too short →
duplicate packets

Timeout

Timeout
RTT

Could Base RTO on RTT Estimation
● Use exponential averaging of RTT samples

E
st
im
at

ed
R
TT

Ti
me

SampleR
TT

Exponential Averaging Example

RTT

tim
e

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant → SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α =
0.8)

EstimatedRTT (α =
0.5)

Exponential Averaging in Action

from Jacobson and Karels, SIGCOMM 1988

Set Timeout estimate (ETO) = 2 × EstimatedRTT

Jacobson/Karels Algorithm
● Problem: need to better capture variability in RTT

● Directly measure deviation

● Deviation = | SampleRTT – EstimatedRTT |

● EstimatedDeviation: exponential average of Deviation

● ETO = EstimatedRTT + 4 x EstimatedDeviation

With Jacobson/Karels

Problem: Ambiguous Measurements
● How do we differentiate between the real ACK, and ACK of

the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
e

R
TT

Sender Receiver

ACKRetransmission

Original Transmission

Sa
m

pl
e

R
TT

Sender Receiver

The Following TCP Rules….
● Do not describe current implementations….

● ...but will be considered the “Truth” in this class

64

TCP Timers
● Two important quantities:

● RTO: value you set timer to for timeouts
● ETO: current estimate of appropriate “raw” timeout

● Use exponential averaging to estimate:
● RTT
● Deviation = | EstimatedRTT – SampleRTT|

● ETO = EstimatedRTT + 4 x EstimatedDeviation 65

Use Only “Clean” Samples for ETO
● Only update ETO when you get a clean sample

● Where clean means ACK includes no
retransmitted segments

66

Example
● Send 100, 200, 300

● 100 means packet whose first byte is 100, last byte is 199

● Receive A200:
● A200 means bytes up to 199 rec’d, expecting 200 next.
● Clean sample

● 200 times out, resend 200, receive A300
● No clean samples

● Send 400, 500, receive A600
● Clean samples

67

Setting RTO
● Every time RTO timer expires, set RTO ← 2·RTO

● (Up to maximum ≥ 60 sec)

● Every time clean sample arrives set RTO to ETO

68

Example
● First arriving ACK expects 100 (adv. window=500)

● Initialize ETO; RTO = ETO
● Restart timer for RTO seconds (new data ACKed)

● Remember, TCP only has one timer, not timer per packet

● Send packets 100, 200, 300, 400, 500
● Arriving ACK expects 300 (A300)

● Update ETO; RTO = ETO
● Restart timer for RTO seconds (new data ACKed)
● Send packets 600, 700

● Arriving ACK expects 300 (A300) 69

Example (Cont’d)
● Timer goes off

● RTO = 2*RTO (back off the timer)
● Restart timer for RTO seconds (it had expired!)
● Resend packet 300

● Arriving ACK expects 800
● Don't update ETO (ACK includes a retransmission)
● Restart timer for RTO seconds (new data ACKed)
● Send packets 800, 900, 1000, 1100, 1200

70

Example (Cont’d)
● Arriving ACK expects 1000

● Update ETO; RTO = ETO
● Restart timer for RTO seconds (new data ACKed)
● Send packets 1300, 1400

● … Connection continues …

71

This is all very interesting, but…..

● Implementations often use a coarse-grained timer
● 200 msec is typical (depends on implementation)

● So what?
● Above algorithms are largely irrelevant
● Incurring a timeout is expensive

● So we rely on duplicate ACKs
72

Bonus Question: TCP Connection Life Cycle

Bonus Question: TCP Connection Life Cycle

