Reliable Delivery, TCP

— CS168 - Spring 2024 -

Agenda

e (new) Go-Back-N
e Review
e Worksheet

Reliability

e Best-effort network
o Need to handle packet loss, corruption, reordering, delays, duplications, etc.

e Building blocks

Checksums: detect corruption

Feedback: positive/negative feedback from receiver
Retransmissions: sender re-sends packets

Timeouts: when to resend a packet

Sequence numbers: indicate which packets have been received

e Design considerations
o Window size, nature of feedback, detection of loss, response to loss

o O O O O

a
Startin t rcp does, but

& Poj
S . nt u
Go-Back-N OMething e, O gure oqs o1 as 4

er,

e Simple (though not advisable algorithm)
e “Sliding window" protocol: sender keeps a window of up to W transmitted but
unACKed packets

send_base nexfsegnum — il e
¢ ¢ ack’ed yet sent
TR EOEL DT RO000ID | sesmerea] motoncee
+ _ window size —*
N

e Timer for oldest in-flight packet
On timeout, resend all W packets (starting with the lost one)
e Receiver discards out-of-order packets

Kurose Ross, Computer Networking: A Top-down Approach, Chapter 3
s

Go-Back-N w/o Errors

nv unmw uv m
LA | | I |

DONR

SR
BN R

Window

Go-Back-N w/o Errors

S=1

wn nv unom

2
3
4
5

SR
BN R

Go-Back-N w/o Errors

TEOTeee
ol AWN R
SR
pwN R

Window

Go-Back-N w/o Errors

wnmv n om nunmumvmom
SR
A WNPR

N oG AODNPR

Window

i
(9

Go-Back-N w/o Errors

S NM < "N O NN
[| S | || i

A LI

SATY TR
NUHLLL VOV nyn

Go-Back-N w/ Errors

Window:

{1234}
{1234}
{1234}
{1234}

{2345}
{345 6}
{4567}
{5678}

{6789}

Packet 6 timeout

=
|
|

}

— &

'0

|

wn (.h(.hl(.h(.h n n n om

U)U)U)U)l
NO 00O N O

\ofo

DODNPRF

> >>>>
o

T
(SN0

TET R
O 0 N O

Review

TCP

* L4 Protocol (Transport) Source Destination

* Byte Stream Sequence Number

« Bi-directional Acknowledgment

« Reliable HdrLen o Flags Advertised window
e |n-order Checksum Urgent

Options

TCP Header
 Host port numbers

— Multiplexing and Sequence number
dem.ultlplexmg Acknowledgment
— 16 bits . .
HdrLen o Flags Advertised window
But wait - why no addr?! CnEE S g
— IP header has addr. Options

Data

TCP Header

 Byte offset Source Destination

- Of first payload byte

— Initialized randomly Acknowledgment

HdrLen o Flags Advertised window
e Byte Stream Protocol

Checksum Urgent
— Seq # refers to bytes

Options

Data

TCP Header

e Cumulative ACKs Source Destination
« Seq # of next byte Seqguence number
ACKSs HdrLen o Flags Advertised window
Checksum Urgent
Options

Data

TCP Header

e Header Iength Source Destination
— 4 bits Sequence number
— In 4-byte words Acknowledgment
. “ggﬂémum 5 words 0 Flags Advertised window
. f\/laxi)mum 15 words Checksum S
Options

— Why?

TCP Header

 SYN Source Destination
— SYNchronize initial state Sequence number
 ACK Acknowledgment

— ACKnowledgement HdrLen 0 Advertised window

* FIN

— No more data o
. RST ptions

Checksum Urgent

— Connection ReSeT

TCP Header

 Receive Window Size Source Destination
— Maximum receiver Sequence number
buffer Acknowledgment

* Limits sending rate Hdrlen o Flags |Advertised window

— Don't send faster than
receiver can process Checksum Urgent

Options

TCP Header

e Checksum Source Destination
— Includes header and | Sequence nuhber
p‘ayload Acknowledgment
* Options common HdrLen o Flags Advertised window

— Unlike IP
— Not covered Urgent

— Assume no options

unless specified

Data

Connection Establishment

Three Way Handshake

« Client sends server a
SYN
— A TCP packet with the

SYN flag set

* SYN packet carries
initial state
— Receive window
— Source port number
— Initial sequence number

Client

<SYN_SENT> connect<

connect()
<ESTABLISHED>
returmns

<XXXXX> == State of
TCP state machine

Wb
_/

o N, ACKMH

Server

<LISTEN>
listen()

ccept()
<SYN RECV>

accept() _corasiisHeD>

retums

Three Way Handshake

« Acknowledge the client's

Server responds with a
SYN-ACK

SYN

Respond with the
server's own SYN

Carries server's initial
state

— Receive window

— Source port number

— Initial sequence number

Client

<SYN_SENT> connect()

connecty
<ESTABLISHED>

retums

<XXXXX> == State of
TCP state machine

Server

<LISTEN>
listen()

accept()

)

accept()
retums

<SYN_RECV>

<ESTABLISHED>

Three Way Handshake

 Client responds with et corver -
an ACK listen()
° NOW the Connection iS <SYN_SENT> connect() W» accept()
<SYN_RECV>

established!

— Client and server can N, ACKMHL
freely communicate cesmsens COect) [SRS

retums

P iy N
== AC 1 t
e et <W~b }ccep () <estasuISHED>

etumns

Connection Establishment

« Sequence number and acknowledgement number
don't start from zero

 Instead client and server choose a random initial seq
*

— Why?
« Must be communicated between client and server

Connection Establishment

« Client/Server exchange state
— Initial Sequence numbers

— Port number
— TCP Options

Teardown

Two Teardown Methods

e Four way handshake
— Graceful/normal teardown

* Reset
— Exceptional Teardown

Normal Teardown

e Other side may continue

« Eventually it closes as well

One side closes their connection
— Indicates they will send no more data

— Sends a FIN
— Receives an ACK

transmitting

— Sends a FIN
— Receives an ACK

Connection is closed

client

close
(active close)

____"““*-—Egiﬂi__________‘-
k”’"ﬁsﬂﬂ-—-’—/
W
W‘

server

(passive close)
read returns 0

close

TCP Reset

« Reset the connection
— Most commonly, attempt to SYN on a closed port

« Send RST packet(s) only (no ACK)

Reliability

Reliability

e Cumulative ACKs
— Allow detection of dropped packets

« How do we know a packet was lost?
— Timeout
— Duplicate ACKs

Timeout

 Retransmission Time Out (RTO)
— Timeout after which packets are retransmitted
— Based on a constantly updated RTT estimate (and variance)
 Single timer (not per-packet)
— Each received ACK of new data resets RTO
— If RTO times out
« Retransmit packet containing “next byte”

Timeout

« Whatif RTO is too large?

« Packetis dropped...
— Wait
— Keep waiting
— ... Keep waiting
— Timer goes off
* Finally retransmit

« Can we do better?

Duplicate ACKs

e Transmit

Seq 1000

36 3005 rapped n g
e ropped In flight
Seg|4ooo PP &
Seq 5000

Seq 6000

hat ACKs do we receive?
ACK 2000
ACK 3000
ACK 3000
ACK 3000
ACK 3000

* Duplicate ACKs indicate packet loss/reorder

IIIIIEIIIIII

Worksheet

o

1.1

| Packet # Sent | Sent on timeout/3rd duplicate ACK? | Dropped? | Cumulative ACK
1 D100 A200
2 D200 X
3 D300 A200
4 D400 A200
5 D200 X A500
6 D500 A600
7 D600 A700
8 D700 X
9 D800 A700
10 D900 A700
11 D700 X A1000
12 D1000 A1100

p—
(5]

N

01.2

1RTT <

TO <

D100 .
/" D200 |
D300 |

1RTT

D200

A200
A200

--------- Timer start (A200)

--------- Time-out! Retransmit

-A500

01.2

D500
é D600
D700

1RTT <

D900

TO <

D700

1RTT

‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\\.A600

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\\>A7OO

~A700

~A700

»~ A1000

Timer start (A700)

Time-out! Retransmit

D1000
Ql'z 1RTT \.Alloo

Total Time=RTT+TO+RTT+RTT+TO+RTT+RTT
=5*RTT+2*TO
= 6.05 seconds

02.1 & 2.2

1. Suppose two hosts are about to open a TCP connection. The TCP headers used in the communication
are only 20 bytes long and regular (no-options) IPv4 is being used for Layer 3. If the MTU of the link
is 1260 bytes, what is the MSS?

2. When this connection starts, the sender starts with an ISN 19. The initial window for the sender is set
to 10 packets. Given the previously calculated MSS, what ACK does the sender receive as part of the
TCP handshake? After that, what is the first and last ACK the sender receives for this initial window?
(Assume no packets were lost or reordered).

02.1 & 2.2

1. Suppose two hosts are about to open a TCP connection. The TCP headers used in the communication
are only 20 bytes long and regular (no-options) IPv4 is being used for Layer 3. If the MTU of the link
is 1260 bytes, what is the MSS?

Solution: 1220 bytes = 1260 bytes - 20 bytes (TCP) - 20 bytes (IP)

2. When this connection starts, the sender starts with an ISN 19. The initial window for the sender is set
to 10 packets. Given the previously calculated MSS, what ACK does the sender receive as part of the
TCP handshake? After that, what is the first and last ACK the sender receives for this initial window?
(Assume no packets were lost or reordered).

Solution: The ACK as part of the TCP handshake will be 20, because the receiver is ACKing having
received the ISN. After that, the first ACK for real data sent by the sender will be 1240 which is the
MSS (1220, calculated in the last problem) + the current sequence number, which is 20. The last last
ACK will be 12220, which is the next sequence number after all data is sent, 12200 + ISN = 12200 +
W= 12220,

02.3

(3) In this part of the question we will determine the estimated RTT using some parameters of TCP. The
following equations may be useful. Assume that connections have been open and that there are no
dropped packets.

ETO = Estimated RTT +4 - Estimated_Deviation
Estimated _Deviation = |Estimated RTT — Sample RTT |
Estimated RTT = o - Estimated RTT + (1 — o) - Sampled RTT

a. The sender receives the current ACK and proceeds to update its various estimations. The time from
when the packet was sent to when the ACK was received was 10msec. If the previous Estimated RTT
was 70msec, what will the new EstimatedgTT be (is 0.5)?

b. If the previous Estimated _Deviation was 50msec, what is the new Estimated_Deviation (o is still
0.5)?

c. Based on the previous 2 questions, what will the ET O be now?

02.3

ETO = Estimated _RTT + 4 - Estimated_Deviation
Estimated Deviation = |Estimated RTT — Sample RTT |
Estimated RTT = o - Estimated RTT + (1 — «) - Sampled RTT

a. The sender receives the current ACK and proceeds to update its various estimations. The time from
when the packet was sent to when the ACK was received was 10msec. If the previous Estimated RT T
was 70msec, what will the new EstimatedgTT be (is 0.5)?

Solution: Estimated_RTT = 0.5-70msec + 0.5 + 10msec = 40msec

b. If the previous Estimated_Deviation was S0msec, what is the new Estimated_Deviation (o is still
0.5)?

Solution:
Estimated Deviation = 0.5 - Estimated Deviation + 0.5 - |Estimated RTT - Sample RTT|
= 0.5-50msec + 0.5 - (40msec — 10msec)

= 40msec

c. Based on the previous 2 questions, what will the ET O be now?

Solution: ET O = 40msec + 4 - 40msec = 200msec

02.4 & 2.5

(4) What is the maximum theoretical rate of data transfer for this window size if the Estimated _RTT is
what was previously estimated?

(5) Assume 40msec is the Estimated RTT. If the lowest bandwidth across this connection is 76.25M Bps,
what is the smallest window that optimizes the question?

02.4 & 2.5

(4) What is the maximum theoretical rate of data transfer for this window size if the Estimated _RTT is
what was previously estimated?

Solution:

Window _Size(bytes) = Window _Size(Packets) - 1220bytes = 12200bytes
122 S

0Obytes — 30500

40msec sec

Bandwidth = bytes

= 305KBps

(5) Assume 40msec is the Estimated _RTT. If the lowest bandwidth across this connection is 76.25M Bps,
what is the smallest window that optimizes the question?

6
Solution: "*2X19DYES o 40msec = 3.05MB

Question 3: Reliability ?

03: Bob's Idea

A=2

A=4

WL
VXV XV, YY)

03: Alice’s Idea

nunuvmom

DONR

04

L

Pop Quiz: TCP vs UDP

For each statement below, mark whether describes TCP, UDP, both (mark both) or neither (mark none).

TCP | UDP

Provides reliable transport

Limits messages to a single packet

Has source port in the header

Requires connection establishment

You will use this for your project 2.

It is optional to use the L4 checksum with this protocol (under IPv4)

04

L

Pop Quiz: TCP vs UDP

For each statement below, mark whether describes TCP, UDP, both (mark both) or neither (mark none).

TCP | UDP
Provides reliable transport X
Limits messages to a single packet X
Has source port in the header X X
Requires connection establishment X
You will use this for your project 2. X
It is optional to use the L4 checksum with this protocol (under IPv4) X

05.TCP Short Questions

Discuss with a person next to you.

05.TCP Short Questions

1. The purpose of a TCP handshake is: (circle all the apply)

(a) Connection establishment
(b) Exchange of initial sequence number
(c) Transfer of client’s request data

(d) To indicate a packet loss

Solution: (a) Connection establishment, (b) Exchange of initial sequence number
2. Which of the following is provided by TCP, but not by UDP? (circle all that apply)

(a) Reliable transfer
(b) Congestion control
(¢) Mux and demux from/to application processes

(d) Byte-stream abstraction
Solution: (a) Reliable transfer, (b) Congestion control, and (d) Byte-stream abstraction. These are

all true by definition of what TCP is. Mux/demux from/to application processes is done using port
numbers, which both TCP and UDP use.

05.TCP Short Questions

3. What flag is usually set on the first packet in a TCP exchange?

(a) RST
(b) SYN
(c) IETF
(d) FIN

Solution: (a) SYN.

4. What message type does TCP send to abruptly terminate a connection?

(a) RST
(b) SYN
(c) IETF
(d) FIN

Solution: (a) RST. SYN packets are used for handshakes, IETF isn’t a type of TCP packet, and FIN
packet are indeed used by TCP, but for graceful termination of a connection.

Estimating RTO

Timeouts and Retransmissions

Reliability requires retransmitting lost data

Involves setting timers and retransmitting on timeouts

TCP only has a single timer
TCP resets timer whenever new data is ACKed
Retx packet containing “next byte” when timer expires

56

RTO (Retransmit Time Out) is basic timeout value

Setting the Timeout Value (RTO)

g — 1 g o
R e [Timeout
RTT ' I~ 1
...... Vv

—1

Timeout too long — inefficient Timeout too short —
duplicate packets

Could Base RTO on RTT Estimation

o Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime — SendPacketTime
EstimatedRTT = o x EstimatedRTT +(1—a) x SampleRTT

O<a<l
4 ampleR
SIS _SampleR
E : ———————— . TT\:: ___________
>~ - s o S, T P
ss T - \ r
m V ‘[\‘ ‘ -~

Ti

Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT
Assume RTT is constant —» SampleRTT = RTT

RTT

EstimatedRTT (0.=
0.5)

tim

Exponential Averaging in Action
Set Timeout estimate (ETO) =2 x EstimatedRTT

Figure 5: Performance of an RFC793 retransmit timer

ATT (sac)
8

11111

SIGCOMM 1988

from Jacobson and Karels,

Jacobson/Karels Algorithm

o Problem: need to better capture variability in RTT
Directly measure deviation

o Deviation = | SampleRTT — EstimatedRTT |
o EstimatedDeviation: exponential average of Deviation

e ETO = EstimatedRTT + 4 x EstimatedDeviation

RTT (sac)

With Jacobson/Karels

Figure 6: Performance of a Mean+Variance retransmit timer

o,

10
|

Problem: Ambiguous Measurements

« How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

Sender Receiver Sender Receiver
nanmhk

Tf’an .
SmISsiOn Ac iOn

-
C R etr R
¢ WSmissio,, : Smissio,
\ 4

Sample
RTT

Sample
RTT

The Following TCP Rules....

Do not describe current implementations....

...but will be considered the “Truth” in this class

64

TCP Timers

o [Two important quantities:
RTO: value you set timer to for timeouts
ETO: current estimate of appropriate “raw” timeout

o Use exponential averaging to estimate:
RTT
Deviation = | EstimatedRTT — SampleRTT]|

e ETO = EstimatedRTT + 4 x EstimatedDeviation ~

Use Only “Clean” Samples for ETO

o Only update ETO when you get a clean sample

e Where clean means ACK includes no
retransmitted segments

66

Example

Send 100, 200, 300
100 means packet whose first byte is 100, last byte is 199

Receive A200:

A200 means bytes up to 199 rec’d, expecting 200 next.
Clean sample

200 times out, resend 200, receive A300

No clean samples

Send 400, 500, receive A600

Clean samples

67

Setting RTO

o Everytime RTO timer expires, set RTO «— 2-RTO

(Up to maximum = 60 sec)

o Every time clean sample arrives set RTO to ETO

68

Example

o First arriving ACK expects 100 (adv. window=500)
Initialize ETO; RTO = ETO
Restart timer for RTO seconds (new data ACKed)

Remember, TCP only has one timer, not timer per packet

Send packets 100, 200, 300, 400, 500

o Arriving ACK expects 300 (A300)
Update ETO; RTO = ETO
Restart timer for RTO seconds (new data ACKed)
Send packets 600, 700

o Arriving ACK expects 300 (A300)

69

Example (Cont’d)

o Timer goes off
RTO = 2*RTO (back off the timer)
Restart timer for RTO seconds (it had expired!)
Resend packet 300

o Arriving ACK expects 800
Don't update ETO (ACK includes a retransmission)
Restart timer for RTO seconds (new data ACKed)
Send packets 800, 900, 1000, 1100, 1200

70

Example (Cont’d)

o Arriving ACK expects 1000
Update ETO; RTO = ETO
Restart timer for RTO seconds (new data ACKed)
Send packets 1300, 1400

e ... Connection continues ...

71

This is all very interesting, but.....

o Implementations often use a coarse-grained timer
200 msec is typical (depends on implementation)

e S0 what?

Above algorithms are largely irrelevant
Incurring a timeout is expensive

o S0 we rely on duplicate ACKs

72

TCP State Transitions

CLOSED

Active open /SYN
Passive open

LISTEN

SYN/SYN + ACK Send SYN

SYN_RCVD

‘

SYN_SENT
SYN + ACK/ACK

Data, ACK
exchanges
are in here

Close/FIN ESTABLISHED

Close/FIN FIN/ACK

FIN_WAIT_1 CLOSE_WAIT

FIN/ACK
Close/FIN

CLOSING LAST_ACK

Timeout after two
ACK segment lifetimes ALK

TIME_WAIT CLOSED

FIN/ACK

Bonus Question: TCP Connection Life Cycle

2 Flags

HOST B TIME _

/
T
/
\

HOST A T

The above figure shows the life cycle of a TCP connection with normal termination - that is, connection
establishment, data exchange, and teardown.

(1) For each of the arrows, choose whether it is a SYN, ACK, data, FIN or RST packet. A single arrow
might have more than one of these flags set.

Bonus Question: TCP Connection Life Cycle

2 Flags

HOST B TIME _

|
e
|
/
X

HOST A J

The above figure shows the life cycle of a TCP connection with normal termination - that is, connection
establishment, data exchange, and teardown.

(1) For each of the arrows, choose whether it is a SYN, ACK, data, FIN or RST packet. A single arrow
might have more than one of these flags set.

SYN D: data G: FIN
B: SYN+ACK E: ACK H: FIN+ACK
ACK F: ACK I: ACK

