Congestion Control/MT Review

= (S 168 -5pring 2024 - Discussion /7 ==

TCP Circa 1986

What happens when router buffers fill up?
— Packets get dropped

Then what happens at the sender?

— Increased RTT, timeouts, retransmits
« —More packets in the network!!
e ... SO more retransmits!

Eventually, useful throughput approaches zero
This is the congestion collapse of 1986!

Congestion Control

Goal of Congestion Control

« Limit the # of packets in flight
— Utilize our fair share of bandwidth...
— But don't overload the network

« Adapt to the right bandwidth

« Be fair
— Links are shared among many hosts

A naive solution

e Overwhelmed? Tell the sender to slow down!
— Both routers & receiver

 |ICMP “Source Quench”

* Problems?
— Ifthelink is already overwhelmed, these extra messages
may be dropped too! (or add more traffic)

A host-based solution sketch

1. Pick an initial rate R

2. Try sending at rate R for some period of time

a. If congestion: reduce R
b. Else:increase R

3. Repeat step 2

A host-based solution sketch

1. Pick an initial rate R — How to pick initial rate
2. Try sending at rate R for some period of time — How

to detect congestion
a. If congestion: reduce R — How much to increase/decrease
b. Else:increase R

3. Repeat step 2

TCP: loss-based feedback

Idea: drop implies congestion

* 3 dupACK: minor congestion (ACKs get through)
- Timeout: major congestion (nothing gets through)

TCP's response depends on the kind of loss.

Congestion Control: Windows

Receive Window (RWND)
— What rate at which the receiver can process packets

Congestion Window (CWND)
— What rate at which the network can process packets

Sending rate
— Smaller of the two

In this class, we assume CWND << RWND
— Network will determine our sending rate

TCP Sawtooth

CWND

Time

Congestion Avoidance/
Fast Recovery

Slow Start

Utilization

 The TCP sawtooth alternates between:
— Over-utilizing bandwidth (causing drops)
— Under-utilizing bandwidth
« Smart choices around buffering can result in higher

utilization by absorbing the increase in window size

Three States

1. Slow Start
2. Congestion Avoidance
3. Fast Recovery

CWND

The Big Picture

timeout
hew
dupAck cwnd > ssthresh ACK
timeout
new ACK dupAcCk

new ACK
dupACK=3

dupACK=3

dupACK

Implementation

e State at sender
— CWND

- Max sending rate without congesting network (assuming
CWND << RWND)

— ssthresh

» Threshold CWND for exiting slow start
— dupACKcount

« Count of contiguous duplicate ACKs received
— timer

Congestion Control Mechanics

1. Slow Start
— Rapidly increase our initial sending rate until we hit bottleneck

2. Congestion Avoidance
— Adapting our sending rate to current network conditions
— AIMD (Additive Increase, Multiplicative Decrease)

3. Fast Recovery

— Optimizing recovery from isolated loss
— Detected through Duplicate ACKs

Implementation

« Events at sender
— ACK (new data)
— dupACK (duplicate ACK for old data)
— Timeout

* ... receiver just receives packets and sends ACKs

Now the Details

* Thanks Alex Triana, our amazing F'15 TA!

Slow Start

 Value of CWND starts at (small constant) * MSS

« For each packet that is acknowledged, increase the
CWND by 1

 Effectively doubles CWND every RTT!

 Window goesfrom1 —»2 >4 — ...

Slow Start -- Intuition

* Instead of blasting packets based on the receive
window

 Build up initial transmission rate slowly
- Back off when we've exceeded the capacity

Slow Start - When Does It End?

« 2 Ways
1) If CWND > ssthresh

« Enter congestion avoidance

2) If we get 3 duplicate ACKs
* Enter Fast Recovery

e If timeout:
* Restart slow start, ssthresh = cwnd/2, CWND = 1

DupACK

- DupAckCount++
Timeout
- ssthresh =cwnd /2 New ACK
- Cwnd =1 - Cwnd = Cwnd +1
- dupAckCount =0 - dupAckCount =0
Slow
Start |
=
dupAckCount == cwnd > ssthresh
Move to Fast Recovery Move to Congestion Avoidance

- ssthresh =cwnd /2
- cwnd = ssthresh + 3
- Retransmit missing packet

Congestion Avoidance -- Intuition

 |In the steady state
« Constantly probe for more bandwidth
« When we've exceeded - back off aggressively

Congestion Avoidance

« Growth is more conservative than slow start
 After each new ACK, increase CWND by 1/ CWND
« After one RTT, CWND will have increased by ~1

« When does it stop?
1) Timeout — back to slow start
2) 3 duplicate ACKS — Fast recovery

DupACK

-DupAckCount++

<
Timeout

Move to Slow Start
- ssthresh=cwnd /2

- cwnd=1
- dupAckCount =0

New ACK
- cwnd =cwnd + 1/cwnd
- dupAckCount =0

Congestion

Avoidance

MCKCount ==

Y

Move to Fast Recovery
- ssthresh=cwnd /2
- cwnd = ssthresh + 3
- Retransmit missing packet

Fast Recovery — Intuition

« Asingle lost packet
— May just be a fluke

« Resetting CWND may be too aggressive

* Instead just retransmit that single packet
— And continue as if nothing happened

Fast Recovery

* Every duplicate ACK increases the window by 1

* When does it stop?
1) Timeout — back to Slow Start
2) New ACK — back to Congestion Avoidance

New ACK
Move to Congestion Avoidance
- cwnd = ssthresh

- dupAckCount =0

Timeout

Move to Slow Start

- ssthresh = cwnd / 2 Fast
-cwnd =1

- dupAckCount =0 Recove ry

DupACK
-cwnd =cwnd + 1

Big Ideas

« Fundamental concepts:

— Slow Start
— AIMD

 Hack

— Fast Recovery

* Lesson
— Sometimes, BAND-AIDs scale remarkably well!

End of section slides

Worksheet

Question 1

. UDP uses congestion control.

. Flow control slows down the sender when the network is congested.

. For TCP timer implementations, every time the sender receives an ACK for a previously unACKed
packet, it will recalculate ETO.

. CWND (congestion window) is usually smaller than RWND (receiver window).

. AIMD is the only "fair” option among MIMD, AIAD, MIAD, and AIMD.

1)

Without Fast Recovery

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:;i:riizrii(ges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /

1.3 102 (104) 10.1 /

1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /

1.6 102 (107) 5 /

1.7 102 (108) 5 /

1.8 102 (109) 5 /

1.9 102 (110) 5 /

2.0 102 (111) 5 /

2.4 112 (102) 5+1/Floor(5)=5.2 112 -116 (No)

1) Without Fast Recovery

Ssthresh=5

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:z:rzi(::iges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /
13 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)

1) Without Fast Recovery

Ssthresh=5

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr?;:rziczrii(tges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
12 102 (103) 10.1 /
13 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /

1) Without Fast Recovery

Ssthresh=5

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr?;:rziczrii(tges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
12 102 (103) 10.1 /
13 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /
1.6 102 (107) 5 /

1) Without Fast Recovery

Ssthresh=5

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:mei:rzi(::i(ges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /
1.6 102 (107) 5 /
1.7 102 (108) 5 /

1) Without Fast Recovery
e On new ACK, CWND = CWND + 1/Floor(CWND)

e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Ssthresh=5

Transmit Seq # (yes for

Time (sec) Receive ACK (due to) CWND retransmit
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /
1.6 102 (107) 5 /
1.7 102 (108) 5 /
1.8 102 (109) 5 /

1) Without Fast Recovery
e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Ssthresh=5

Transmit Seq # (yes for

Time (sec) Receive ACK (due to) CWND retransmit
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /
1.6 102 (107) 5 /
1.7 102 (108) 5 /
1.8 102 (109) 5 /
1.9 102 (110) 5 /

1) Without Fast Recovery

Ssthresh=5

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:mei:rzi(::i(ges for
1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)
1:2 102 (103) 10.1 /

1.3 102 (104) 10.1 /
1.4 102 (105) Floor(10.1/2)=5 102 (Yes)
1.5 102 (106) 5 /
1.6 102 (107) 5 /
1.7 102 (108) 5 /
1.8 102 (109) 5 /
1.9 102 (110) 5 /
2.0 102 (111) 5 /

1)

Without Fast Recovery

e On new ACK, CWND = CWND + 1/Floor(CWND)
e On triple duplicate ACKs, SSTHRESH = Floor(CWND/2), then CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:;i:riizrii(ges for

1.0 ho2 (101) 10+1/Floor(10)=10.1 111 (No)

1.2 102 (103) 10.1 /

1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)=5 102 (Yes)

1.5 102 (106) - /

1.6 102 (107) - /

1.7 102 (108) 5 /

1.8 102 (109) 5 /

1.9 102 (110) 5 /

2.0 102 (111) - /

2.4 112 (102) 5+1/Floor(5)=5.2 112 - 116 (No)

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
13 102 (104) 10.1 /

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
13 102 (104) 10.1 /
Ssthresh=5 14 102 (105) Floor(10.1/2)+3=8 102 (Yes)

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /
1.6 102 (107) 10 /

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /
1.6 102 (107) 10 /
1.7 102 (108) 11 112 (No)

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o

1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /

Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /
1.6 102 (107) 10 /
1.7 102 (108) 11 112 (No)
1.8 102 (109) 12 113 (No)

— .

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /
1.6 102 (107) 10 /
1.7 102 (108) 11 112 (No)
1.8 102 (109) 12 113 (No)
1.9 102 (110) 13 114 (No)
— .

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o
1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)
1.2 102 (103) 10.1 /
1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)
B 102 (106) 9 /
1.6 102 (107) 10 /
1.7 102 (108) 11 112 (No)
1.8 102 (109) 12 113 (No)
1.9 102 (110) 13 114 (No)
2.0 102 (111) 14 115 (No)
— .

2) With Fast Recovery
e On triple duplicate ACK, SSTHRESH = CWND/2, then CWND = SSTHRESH + 3, and enter fast recovery

® In fast recove}'y, CWND += 1 on every duplicate ACK
e Exit fast recovery on new ACK, setting CWND = SSTHRESH

Time (sec) Receive ACK (due to) CWND Transr:\;:rziir:i(ges o

1.0 102 (101) 10+1/Floor(10)=10.1 111 (No)

1.2 102 (103) 10.1 /

1.3 102 (104) 10.1 /
Ssthresh=5 1.4 102 (105) Floor(10.1/2)+3=8 102 (Yes)

B 102 (106) 9 /

1.6 102 (107) 10 /

1.7 102 (108) 11 112 (No)

1.8 102 (109) 12 113 (No)

1.9 102 (110) 13 114 (No)

2.0 102 (111) 14 115 (No)

2.4 112 (102) SSTHRESH =5 116 (No)

Question 3

HOST B TIME

/ \ / /\E \: / W/
} >
HOST A J
A: D: G:
B: E: H:

I

