
Congestion Control/MT Review
CS 168 – Spring 2024 – Discussion 7



TCP Circa 1986
• What happens when router buffers fill up?

– Packets get dropped
• Then what happens at the sender?

– Increased RTT, timeouts, retransmits
• →More packets in the network!!
• … So more retransmits!

• Eventually, useful throughput approaches zero
• This is the congestion collapse of 1986!



Congestion Control



Goal of Congestion Control
• Limit the # of packets in flight

– Utilize our fair share of bandwidth…
– But don’t overload the network

• Adapt to the right bandwidth
• Be fair

– Links are shared among many hosts



A naïve solution
• Overwhelmed? Tell the sender to slow down!

– Both routers & receiver
• ICMP “Source Quench”
• Problems?

– If the link is already overwhelmed, these extra messages 
may be dropped too! (or add more traffic)



A host-based solution sketch
1. Pick an initial rate R 
2. Try sending at rate R for some period of time

a. If congestion: reduce R
b. Else: increase R

3. Repeat step 2



A host-based solution sketch
1. Pick an initial rate R → How to pick initial rate
2. Try sending at rate R for some period of time → How 

to detect congestion
a. If congestion: reduce R → How much to increase/decrease
b. Else: increase R

3. Repeat step 2



TCP: loss-based feedback
Idea: drop implies congestion
• 3 dupACK: minor congestion (ACKs get through)
• Timeout: major congestion (nothing gets through)

TCP’s response depends on the kind of loss.



Congestion Control: Windows
• Receive Window (RWND)

– What rate at which the receiver can process packets
• Congestion Window (CWND)

– What rate at which the network can process packets
• Sending rate

– Smaller of the two
• In this class, we assume CWND << RWND

– Network will determine our sending rate



TCP Sawtooth

Time

C
W

N
D

Slow Start

3 Dup 
ACKs

3 Dup 
ACKs Timeout

Congestion Avoidance/
Fast Recovery



Utilization
• The TCP sawtooth alternates between:

– Over-utilizing bandwidth (causing drops)
– Under-utilizing bandwidth

• Smart choices around buffering can result in higher 
utilization by absorbing the increase in window size



Three States
1. Slow Start

2. Congestion Avoidance

3. Fast Recovery

Time

C
W

N
D

Slow Start

3 Dup 
ACKs

3 Dup 
ACKs Timeout

Congestion Avoidance/
Fast Recovery



slow 
start

congstn. 
avoid.

fast 
recovery

cwnd > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout

new 
ACK

dupACK

dupACK

The Big Picture



Implementation
• State at sender

– CWND
• Max sending rate without congesting network (assuming 

CWND << RWND)
– ssthresh

• Threshold CWND for exiting slow start
– dupACKcount

• Count of contiguous duplicate ACKs received
– timer



Congestion Control Mechanics
1. Slow Start

– Rapidly increase our initial sending rate until we hit bottleneck
2. Congestion Avoidance

– Adapting our sending rate to current network conditions
– AIMD (Additive Increase, Multiplicative Decrease)

3. Fast Recovery
– Optimizing recovery from isolated loss
– Detected through Duplicate ACKs



Implementation
• Events at sender

– ACK (new data) 
– dupACK (duplicate ACK for old data)
– Timeout 

• … receiver just receives packets and sends ACKs



• Thanks Alex Triana, our amazing F’15 TA!

Now the Details



• Value of CWND starts at (small constant) * MSS
• For each packet that is acknowledged, increase the 

CWND by 1
• Effectively doubles CWND every RTT!

• Window goes from 1 → 2 → 4 → …

Slow Start



Slow Start -- Intuition
• Instead of blasting packets based on the receive 

window
• Build up initial transmission rate slowly
• Back off when we’ve exceeded the capacity



Slow Start – When Does It End?
• 2 Ways
1) If CWND > ssthresh

• Enter congestion avoidance

2) If we get 3 duplicate ACKs
• Enter Fast Recovery

• If timeout:
• Restart slow start, ssthresh = cwnd/2, CWND = 1



New ACK
- cwnd = cwnd + 1
- dupAckCount = 0

Slow 
Start

cwnd > ssthresh
Move to Congestion Avoidance

dupAckCount == 3
Move to Fast Recovery
- ssthresh = cwnd / 2
- cwnd = ssthresh + 3
- Retransmit missing packet

Timeout
- ssthresh = cwnd / 2
- cwnd = 1
- dupAckCount = 0

DupACK
- DupAckCount++



Congestion Avoidance -- Intuition
• In the steady state
• Constantly probe for more bandwidth
• When we’ve exceeded – back off aggressively



Congestion Avoidance
• Growth is more conservative than slow start
• After each new ACK, increase CWND by 1 / CWND

• After one RTT, CWND will have increased by ~1

• When does it stop?
1) Timeout → back to slow start
2) 3 duplicate ACKS → Fast recovery



New ACK
- cwnd = cwnd + 1/cwnd
- dupAckCount = 0

Congestion 
Avoidance

dupACKCount == 3
Move to Fast Recovery
- ssthresh = cwnd / 2
- cwnd = ssthresh + 3
- Retransmit missing packet

Timeout
Move to Slow Start
- ssthresh = cwnd / 2
- cwnd = 1
- dupAckCount = 0

DupACK
-DupAckCount++



Fast Recovery — Intuition
• A single lost packet

– May just be a fluke
• Resetting CWND may be too aggressive
• Instead just retransmit that single packet

– And continue as if nothing happened



Fast Recovery
• Every duplicate ACK increases the window by 1

• When does it stop?
1) Timeout → back to Slow Start

2) New ACK → back to Congestion Avoidance



New ACK
Move to Congestion Avoidance
- cwnd = ssthresh
- dupAckCount = 0Fast 

Recovery

Timeout
Move to Slow Start
- ssthresh = cwnd / 2
- cwnd = 1
- dupAckCount = 0

DupACK
- cwnd = cwnd + 1



Big Ideas
• Fundamental concepts:

– Slow Start
– AIMD

• Hack
– Fast Recovery

• Lesson
– Sometimes, BAND-AIDs scale remarkably well!



End of section slides



Worksheet



Question 1





Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5





Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Ssthresh=5



Question 3


