
Datacenters
CS 168 – Spring 2024 



Datacenters

● How does one design datacenter networks?
● Consider new assumptions (i.e., different from what 

we learned in Internet).
○ Single administrative control over the network topology, 

traffic, and to some degree end hosts
○ Much more homogenous
○ Strong emphasis on performance
○ Few backwards compatibility requirements, clean-slate 

solutions welcome!
○ ...

We will focus on DC topology in the rest of the 
discussion



Bisection Bandwidth

● We want a network with high bisection bandwidth:
○ Pick the number of links we must cut in order to partition a 

network into two halves
○ Bisection bandwidth is the sum of those bandwidths.



Bisection Bandwidth

● Full bisection bandwidth: Nodes in one partition can 
communicate simultaneously with nodes in the other 
partition at full rate.
○ Given N nodes, each with access link capacity R, bisection 

bandwidth = N/2 x R

● Oversubscription, informally, how far from the full 
bisection bandwidth we are
○ Formally: ratio of worst-case achievable bandwidth to full 

bisection bandwidth.



Bisection Bandwidth



Big switch abstraction
● We want an abstraction of big switch;
● Naive solutions: 

○ Server-to-server full-mesh;
○ A physical big switch? 

● Either impractical or too costly ($$$); 10k hosts * 10k 
hosts = ~100M links

● Can we do better?



Design 1: Fat tree (scale-up)

● Borrowed straight from the High Performance 
Computing (i.e., supercomputers) community

● Use of big, non-commodity switches 

● Problem? Scales badly in terms of cost 
○ ..only a few switch vendors can make big switches

● Scales badly in terms of fault-tolerance 

small switch big switch



Design 2: Clos (scale-out)

● Replace nodes in the fat tree with groups of cheap 
commodity switches
○ cheaper
○ high redundancy (bisection width)

● Allows oversubscription ratio of 1



A Closer look at Clos

● The concept of redundancy and the clos topology 
itself have many variations!

● We focus on the 3-tiered clos topology
● Homogenous switches (k ports) and links
● Each non-core switch has k/2 ports pointing north 

and k/2 pointing south



Caveats about clos

● Oversubscription ratio of 1 only with optimal load 
balancing

● Non-trivial to incrementally build and/or expand the 
network 
○ e.g., port count k is fixed



ECMP

● ECMP - Equal Cost Multi-Path
○ Goal: use multiple paths in network topology that are equal 

cost
○ Idea: Load-balance packets across different forwarding paths

● ECMP Hash Function:
○ f(src_ip, dst_ip, proto, src_port, dst_port)
○ “Per-flow” load balancing



(Over/Under)lay

• With VMs, many hosts spin up frequently
• Addressing could become a mess!

– And won’t scale!
• Thus, we build overlay networks



How? Encapsulation

● Encapsulation: put another header on the packet
 

● Decapsulation: remove extra headers that were 
added for encapsulation



Worksheet - Q1



Worksheet - Q1













router 1

Router/




