
Chapter 7

Linear programming and
reductions

Many of the problems for which we want algorithms are optimization tasks: the shortest path,
the cheapest spanning tree, the longest increasing subsequence, and so on. In such cases, we
seek a solution that (1) satisfies certain constraints (for instance, the path must use edges
of the graph and lead from s to t, the tree must touch all nodes, the subsequence must be
increasing); and (2) is the best possible, with respect to some well-defined criterion, among all
solutions that satisfy these constraints.

Linear programming describes a broad class of optimization tasks in which both the con-
straints and the optimization criterion are linear functions. It turns out an enormous number
of problems can be expressed in this way.

Given the vastness of its topic, this chapter is divided into several parts, which can be read
separately subject to the following dependencies.

Duality

matchings
Flows and

Games

Simplex

Introduction to
linear programming
and reductions

7.1 An introduction to linear programming

In a linear programming problem we are given a set of variables, and we want to assign real
values to them so as to (1) satisfy a set of linear equations and/or linear inequalities involving
these variables and (2) maximize or minimize a given linear objective function.

201



202 Algorithms

Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the objective
function: x1 + 6x2 = c for different values of the profit c.

(a)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

100 200 300 400

100

200

300

400

0

x2

x1

(b)

100 200 300 400

100

200

300

400

0

c = 1500

c = 1200

c = 600

x2

x1

Optimum point
Profit = $1900

7.1.1 Example: profit maximization
A boutique chocolatier has two products: its flagship assortment of triangular chocolates,
called Pyramide, and the more decadent and deluxe Pyramide Nuit. How much of each should
it produce to maximize profits? Let’s say it makes x1 boxes of Pyramide per day, at a profit of
$1 each, and x2 boxes of Nuit, at a more substantial profit of $6 apiece; x1 and x2 are unknown
values that we wish to determine. But this is not all; there are also some constraints on x1 and
x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
Nuit. Also, the current workforce can produce a total of at most 400 boxes of chocolate per day.
What are the optimal levels of production?

We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the profit—is
maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 203

the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.

It is a general rule of linear programs that the optimum is achieved at a vertex of the
feasible region. The only exceptions are cases in which there is no optimum; this can happen
in two ways:

1. The linear program is infeasible; that is, the constraints are so tight that it is impossible
to satisfy all of them. For instance,

x ≤ 1, x ≥ 2.

2. The constraints are so loose that the feasible region is unbounded, and it is possible to
achieve arbitrarily high objective values. For instance,

max x1 + x2

x1, x2 ≥ 0

Solving linear programs
Linear programs (LPs) can be solved by the simplex method, devised by George Dantzig in
1947. We shall explain it in more detail in Section 7.6, but briefly, this algorithm starts at a
vertex, in our case perhaps (0, 0), and repeatedly looks for an adjacent vertex (connected by
an edge of the feasible region) of better objective value. In this way it does hill-climbing on
the vertices of the polygon, walking from neighbor to neighbor so as to steadily increase profit
along the way. Here’s a possible trajectory.

100

300

200

100 2000

Profit $1900

$0 $200

$1400

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal and
halts. Why does this local test imply global optimality? By simple geometry—think of the
profit line passing through this vertex. Since all the vertex’s neighbors lie below the line, the
rest of the feasible polygon must also lie below this line.



204 Algorithms

Figure 7.2 The feasible polyhedron for a three-variable linear program.

x1

x3

x2

Optimum

More products

Encouraged by consumer demand, the chocolatier decides to introduce a third and even more
exclusive line of chocolates, called Pyramide Luxe. One box of these will bring in a profit of $13.
Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to
Luxe. The old constraints on x1 and x2 persist, although the labor restriction now extends to
x3 as well: the sum of all three variables can be at most 400. What’s more, it turns out that
Nuit and Luxe require the same packaging machinery, except that Luxe uses it three times
as much, which imposes another constraint x2 + 3x3 ≤ 600. What are the best possible levels
of production?

Here is the updated linear program.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 205

The space of solutions is now three-dimensional. Each linear equation defines a 3D plane,
and each inequality a half-space on one side of the plane. The feasible region is an intersection
of seven half-spaces, a polyhedron (Figure 7.2). Looking at the figure, can you decipher which
inequality corresponds to each face of the polyhedron?

A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c. As c increases, this profit-plane
moves parallel to itself, further and further into the positive orthant until it no longer touches
the feasible region. The point of final contact is the optimal vertex: (0, 300, 100), with total
profit $3100.

How would the simplex algorithm behave on this modified problem? As before, it would
move from vertex to vertex, along edges of the polyhedron, increasing profit steadily. A possi-
ble trajectory is shown in Figure 7.2, corresponding to the following sequence of vertices and
profits:

(0, 0, 0)
$0

−→ (200, 0, 0)
$200

−→ (200, 200, 0)
$1400

−→ (200, 0, 200)
$2800

−→ (0, 300, 100)
$3100

Finally, upon reaching a vertex with no better neighbor, it would stop and declare this to be
the optimal point. Once again by basic geometry, if all the vertex’s neighbors lie on one side
of the profit-plane, then so must the entire polyhedron.

A magic trick called duality
Here is why you should believe that (0, 300, 100), with a total profit of $3100, is the optimum:
Look back at the linear program. Add the second inequality to the third, and add to them
the fourth multiplied by 4. The result is the inequality x1 + 6x2 + 13x3 ≤ 3100.

Do you see? This inequality says that no feasible solution (values x1, x2, x3 satisfying the
constraints) can possibly have a profit greater than 3100. So we must indeed have found the
optimum! The only question is, where did we get these mysterious multipliers (0, 1, 1, 4) for
the four inequalities?

In Section 7.4 we’ll see that it is always possible to come up with such multipliers by
solving another LP! Except that (it gets even better) we do not even need to solve this other
LP, because it is in fact so intimately connected to the original one—it is called the dual—
that solving the original LP solves the dual as well! But we are getting far ahead of our
story.

What if we add a fourth line of chocolates, or hundreds more of them? Then the problem
becomes high-dimensional, and hard to visualize. Simplex continues to work in this general
setting, although we can no longer rely upon simple geometric intuitions for its description
and justification. We will study the full-fledged simplex algorithm in Section 7.6.

In the meantime, we can rest assured in the knowledge that there are many professional,
industrial-strength packages that implement simplex and take care of all the tricky details
like numeric precision. In a typical application, the main task is therefore to correctly express
the problem as a linear program. The package then takes care of the rest.

With this in mind, let’s look at a high-dimensional application.



206 Algorithms

7.1.2 Example: production planning
This time, our company makes handwoven carpets, a product for which the demand is ex-
tremely seasonal. Our analyst has just obtained demand estimates for all months of the next
calendar year: d1, d2, . . . , d12. As feared, they are very uneven, ranging from 440 to 920.

Here’s a quick snapshot of the company. We currently have 30 employees, each of whom
makes 20 carpets per month and gets a monthly salary of $2,000. We have no initial surplus
of carpets.

How can we handle the fluctuations in demand? There are three ways:

1. Overtime, but this is expensive since overtime pay is 80% more than regular pay. Also,
workers can put in at most 30% overtime.

2. Hiring and firing, but these cost $320 and $400, respectively, per worker.

3. Storing surplus production, but this costs $8 per carpet per month. We currently have
no stored carpets on hand, and we must end the year without any carpets stored.

This rather involved problem can be formulated and solved as a linear program!

A crucial first step is defining the variables.

wi = number of workers during ith month; w0 = 30.
xi = number of carpets made during ith month.
oi = number of carpets made by overtime in month i.

hi, fi = number of workers hired and fired, respectively, at beginning of month i.
si = number of carpets stored at end of month i; s0 = 0.

All in all, there are 72 variables (74 if you count w0 and s0).
We now write the constraints. First, all variables must be nonnegative:

wi, xi, oi, hi, fi, si ≥ 0, i = 1, . . . , 12.

The total number of carpets made per month consists of regular production plus overtime:

xi = 20wi + oi

(one constraint for each i = 1, . . . , 12). The number of workers can potentially change at the
start of each month:

wi = wi−1 + hi − fi.

The number of carpets stored at the end of each month is what we started with, plus the
number we made, minus the demand for the month:

si = si−1 + xi − di.

And overtime is limited:
oi ≤ 6wi.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 207

Finally, what is the objective function? It is to minimize the total cost:

min 2000
∑

i

wi + 320
∑

i

hi + 400
∑

i

fi + 8
∑

i

si + 180
∑

i

oi,

a linear function of the variables. Solving this linear program by simplex should take less
than a second and will give us the optimum business strategy for our company.

Well, almost. The optimum solution might turn out to be fractional; for instance, it might
involve hiring 10.6 workers in the month of March. This number would have to be rounded to
either 10 or 11 in order to make sense, and the overall cost would then increase correspond-
ingly. In the present example, most of the variables take on fairly large (double-digit) values,
and thus rounding is unlikely to affect things too much. There are other LPs, however, in
which rounding decisions have to be made very carefully in order to end up with an integer
solution of reasonable quality.

In general, there is a tension in linear programming between the ease of obtaining frac-
tional solutions and the desirability of integer ones. As we shall see in Chapter 8, finding
the optimum integer solution of an LP is an important but very hard problem, called integer
linear programming.

7.1.3 Example: optimum bandwidth allocation

Next we turn to a miniaturized version of the kind of problem a network service provider
might face.

Suppose we are managing a network whose lines have the bandwidths shown in Fig-
ure 7.3, and we need to establish three connections: between users A and B, between B
and C, and between A and C. Each connection requires at least two units of bandwidth, but
can be assigned more. Connection A–B pays $3 per unit of bandwidth, and connections B–C
and A–C pay $2 and $4, respectively.

Each connection can be routed in two ways, a long path and a short path, or by a combina-
tion: for instance, two units of bandwidth via the short route, one via the long route. How do
we route these connections to maximize our network’s revenue?

This is a linear program. We have variables for each connection and each path (long or
short); for example, xAB is the short-path bandwidth allocated to the connection between A
and B, and x′AB the long-path bandwidth for this same connection. We demand that no edge’s
bandwidth is exceeded and that each connection gets a bandwidth of at least 2 units.



208 Algorithms

Figure 7.3 A communications network between three users A,B, and C. Bandwidths are
shown.

a

cb

12

10

6

13

11

8

user
A

user
B

user
C

max 3xAB + 3x′AB + 2xBC + 2x′BC + 4xAC + 4x′AC

xAB + x′AB + xBC + x′BC ≤ 10 [edge (b,B)]
xAB + x′AB + xAC + x′AC ≤ 12 [edge (a,A)]
xBC + x′BC + xAC + x′AC ≤ 8 [edge (c, C)]

xAB + x′BC + x′AC ≤ 6 [edge (a, b)]
x′AB + xBC + x′AC ≤ 13 [edge (b, c)]
x′AB + x′BC + xAC ≤ 11 [edge (a, c)]

xAB + x′AB ≥ 2

xBC + x′BC ≥ 2

xAC + x′AC ≥ 2

xAB , x
′
AB , xBC , x

′
BC , xAC , x

′
AC ≥ 0

Even a tiny example like this one is hard to solve on one’s own (try it!), and yet the optimal
solution is obtained instantaneously via simplex:

xAB = 0, x′AB = 7, xBC = x′BC = 1.5, xAC = 0.5, x′AC = 4.5.

This solution is not integral, but in the present application we don’t need it to be, and thus no
rounding is required. Looking back at the original network, we see that every edge except a–c
is used at full capacity.

One cautionary observation: our LP has one variable for every possible path between the
users. In a larger network, there could easily be exponentially many such paths, and therefore



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 209

this particular way of translating the network problem into an LP will not scale well. We will
see a cleverer and more scalable formulation in Section 7.2.

Here’s a parting question for you to consider. Suppose we removed the constraint that
each connection should receive at least two units of bandwidth. Would the optimum change?

Reductions
Sometimes a computational task is sufficiently general that any subroutine for it can also
be used to solve a variety of other tasks, which at first glance might seem unrelated. For
instance, we saw in Chapter 6 how an algorithm for finding the longest path in a dag can,
surprisingly, also be used for finding longest increasing subsequences. We describe this phe-
nomenon by saying that the longest increasing subsequence problem reduces to the longest
path problem in a dag. In turn, the longest path in a dag reduces to the shortest path in a
dag; here’s how a subroutine for the latter can be used to solve the former:

function LONGEST PATH(G)
negate all edge weights of G
return SHORTEST PATH(G)

Let’s step back and take a slightly more formal view of reductions. If any subroutine for
task Q can also be used to solve P , we say P reduces to Q. Often, P is solvable by a single
call to Q’s subroutine, which means any instance x of P can be transformed into an instance
y of Q such that P (x) can be deduced from Q(y):

Postprocessx P (x)
Q(y)

Algorithm for P

Preprocess for Q
Algorithmy

(Do you see that the reduction from P = LONGEST PATH to Q = SHORTEST PATH follows
this schema?) If the pre- and postprocessing procedures are efficiently computable then this
creates an efficient algorithm for P out of any efficient algorithm for Q!

Reductions enhance the power of algorithms: Once we have an algorithm for problem
Q (which could be shortest path, for example) we can use it to solve other problems. In
fact, most of the computational tasks we study in this book are considered core computer
science problems precisely because they arise in so many different applications, which is
another way of saying that many problems reduce to them. This is especially true of linear
programming.



210 Algorithms

7.1.4 Variants of linear programming
As evidenced in our examples, a general linear program has many degrees of freedom.

1. It can be either a maximization or a minimization problem.

2. Its constraints can be equations and/or inequalities.

3. The variables are often restricted to be nonnegative, but they can also be unrestricted
in sign.

We will now show that these various LP options can all be reduced to one another via simple
transformations. Here’s how.

1. To turn a maximization problem into a minimization (or vice versa), just multiply the
coefficients of the objective function by −1.

2a. To turn an inequality constraint like
∑n

i=1 aixi ≤ b into an equation, introduce a new
variable s and use

n∑

i=1

aixi + s = b

s ≥ 0.

This s is called the slack variable for the inequality. As justification, observe that a
vector (x1, . . . , xn) satisfies the original inequality constraint if and only if there is some
s ≥ 0 for which it satisfies the new equality constraint.

2b. To change an equality constraint into inequalities is easy: rewrite ax = b as the equiva-
lent pair of constraints ax ≤ b and ax ≥ b.

3. Finally, to deal with a variable x that is unrestricted in sign, do the following:

• Introduce two nonnegative variables, x+, x− ≥ 0.
• Replace x, wherever it occurs in the constraints or the objective function, by x+−x−.

This way, x can take on any real value by appropriately adjusting the new variables.
More precisely, any feasible solution to the original LP involving x can be mapped to a
feasible solution of the new LP involving x+, x−, and vice versa.

By applying these transformations we can reduce any LP (maximization or minimization,
with both inequalities and equations, and with both nonnegative and unrestricted variables)
into an LP of a much more constrained kind that we call the standard form, in which the
variables are all nonnegative, the constraints are all equations, and the objective function is
to be minimized.

For example, our first linear program gets rewritten thus:



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 211

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

=⇒

min −x1 − 6x2

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + s3 = 400

x1, x2, s1, s2, s3 ≥ 0

The original was also in a useful form: maximize an objective subject to certain inequalities.
Any LP can likewise be recast in this way, using the reductions given earlier.

Matrix-vector notation
A linear function like x1 + 6x2 can be written as the dot product of two vectors

c =

(
1
6

)
and x =

(
x1

x2

)
,

denoted c · x or cT x. Similarly, linear constraints can be compiled into matrix-vector form:

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400

=⇒



1 0
0 1
1 1




︸ ︷︷ ︸

(
x1

x2

)
≤




200
300
400




︸ ︷︷ ︸

.

A x ≤ b

Here each row of matrix A corresponds to one constraint: its dot product with x is at most
the value in the corresponding row of b. In other words, if the rows of A are the vectors
a1, . . . ,am, then the statement Ax ≤ b is equivalent to

ai · x ≤ bi for all i = 1, . . . ,m.

With these notational conveniences, a generic LP can be expressed simply as

max cT x

Ax ≤ b

x ≥ 0.

7.2 Flows in networks
7.2.1 Shipping oil
Figure 7.4(a) shows a directed graph representing a network of pipelines along which oil can
be sent. The goal is to ship as much oil as possible from the source s to the sink t. Each
pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil



212 Algorithms

Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.

(a)

s

a

b

c

d

e

t3

3

4

10

1

2

5

5

2

1

1

(b)

s

a

b

c

d

e

t

5

2

0

102

1

4

5

2

1

en route. Figure 7.4(b) shows a possible flow from s to t, which ships 7 units in all. Is this the
best that can be done?

7.2.2 Maximizing flow
The networks we are dealing with consist of a directed graph G = (V,E); two special nodes
s, t ∈ V , which are, respectively, a source and sink of G; and capacities ce > 0 on the edges.

We would like to send as much oil as possible from s to t without exceeding the capacities
of any of the edges. A particular shipping scheme is called a flow and consists of a variable fe

for each edge e of the network, satisfying the following two properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2. For all nodes u except s and t, the amount of flow entering u equals the amount leaving
u: ∑

(w,u)∈E

fwu =
∑

(u,z)∈E

fuz.

In other words, flow is conserved.

The size of a flow is the total quantity sent from s to t and, by the conservation principle,
is equal to the quantity leaving s:

size(f) =
∑

(s,u)∈E

fsu.

In short, our goal is to assign values to {fe : e ∈ E} that will satisfy a set of linear
constraints and maximize a linear objective function. But this is a linear program! The
maximum-flow problem reduces to linear programming.

For example, for the network of Figure 7.4 the LP has 11 variables, one per edge. It seeks
to maximize fsa + fsb + fsc subject to a total of 27 constraints: 11 for nonnegativity (such as
fsa ≥ 0), 11 for capacity (such as fsa ≤ 3), and 5 for flow conservation (one for each node of
the graph other than s and t, such as fsc + fdc = fce). Simplex would take no time at all to
correctly solve the problem and to confirm that, in our example, a flow of 7 is in fact optimal.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 213

Figure 7.5 An illustration of the max-flow algorithm. (a) A toy network. (b) The first path
chosen. (c) The second path chosen. (d) The final flow. (e) We could have chosen this path first.
(f) In which case, we would have to allow this second path.

(a)

s

b

a

t
11

1 1

1

(b)

s

a

t

(c)

s

b

t

(d)

s

b

a

t
11

1 1

0

(e)

s

b

a

t
1

1

1

(f)

s

b

a

t
1

1

1

7.2.3 A closer look at the algorithm
All we know so far of the simplex algorithm is the vague geometric intuition that it keeps
making local moves on the surface of a convex feasible region, successively improving the
objective function until it finally reaches the optimal solution. Once we have studied it in
more detail (Section 7.6), we will be in a position to understand exactly how it handles flow
LPs, which is useful as a source of inspiration for designing direct max-flow algorithms.

It turns out that in fact the behavior of simplex has an elementary interpretation:

Start with zero flow.
Repeat: choose an appropriate path from s to t, and increase flow along the edges
of this path as much as possible.

Figure 7.5(a)–(d) shows a small example in which simplex halts after two iterations. The
final flow has size 2, which is easily seen to be optimal.



214 Algorithms

There is just one complication. What if we had initially chosen a different path, the one in
Figure 7.5(e)? This gives only one unit of flow and yet seems to block all other paths. Simplex
gets around this problem by also allowing paths to cancel existing flow. In this particular
case, it would subsequently choose the path of Figure 7.5(f). Edge (b, a) of this path isn’t in
the original network and has the effect of canceling flow previously assigned to edge (a, b).

To summarize, in each iteration simplex looks for an s − t path whose edges (u, v) can be
of two types:

1. (u, v) is in the original network, and is not yet at full capacity.

2. The reverse edge (v, u) is in the original network, and there is some flow along it.

If the current flow is f , then in the first case, edge (u, v) can handle up to cuv − fuv additional
units of flow, and in the second case, upto fvu additional units (canceling all or part of the
existing flow on (v, u)). These flow-increasing opportunities can be captured in a residual
network Gf = (V,Ef ), which has exactly the two types of edges listed, with residual capacities
cf : {

cuv − fuv if (u, v) ∈ E and fuv < cuv

fvu if (v, u) ∈ E and fvu > 0

Thus we can equivalently think of simplex as choosing an s− t path in the residual network.
By simulating the behavior of simplex, we get a direct algorithm for solving max-flow. It

proceeds in iterations, each time explicitly constructing Gf , finding a suitable s − t path in
Gf by using, say, a linear-time breadth-first search, and halting if there is no longer any such
path along which flow can be increased.

Figure 7.6 illustrates the algorithm on our oil example.

7.2.4 A certificate of optimality
Now for a truly remarkable fact: not only does simplex correctly compute a maximum flow,
but it also generates a short proof of the optimality of this flow!

Let’s see an example of what this means. Partition the nodes of the oil network (Figure 7.4)
into two groups, L = {s, a, b} and R = {c, d, e, t}:

s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

L R

Any oil transmitted must pass from L to R. Therefore, no flow can possibly exceed the total
capacity of the edges from L to R, which is 7. But this means that the flow we found earlier,
of size 7, must be optimal!



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 215

More generally, an (s, t)-cut partitions the vertices into two disjoint groups L and R such
that s is in L and t is in R. Its capacity is the total capacity of the edges from L to R, and as
argued previously, is an upper bound on any flow:

Pick any flow f and any (s, t)-cut (L,R). Then size(f) ≤ capacity(L,R).

Some cuts are large and give loose upper bounds—cut ({s, b, c}, {a, d, e, t}) has a capacity of
19. But there is also a cut of capacity 7, which is effectively a certificate of optimality of the
maximum flow. This isn’t just a lucky property of our oil network; such a cut always exists.

Max-flow min-cut theorem The size of the maximum flow in a network equals the capacity
of the smallest (s, t)-cut.

Moreover, our algorithm automatically finds this cut as a by-product!
Let’s see why this is true. Suppose f is the final flow when the algorithm terminates. We

know that node t is no longer reachable from s in the residual network Gf . Let L be the nodes
that are reachable from s in Gf , and let R = V − L be the rest of the nodes. Then (L,R) is a
cut in the graph G:

L R

ts

e′

e

We claim that
size(f) = capacity(L,R).

To see this, observe that by the way L is defined, any edge going from L to R must be at full
capacity (in the current flow f ), and any edge from R to L must have zero flow. (So, in the
figure, fe = ce and fe′ = 0.) Therefore the net flow across (L,R) is exactly the capacity of the
cut.

7.2.5 Efficiency
Each iteration of our maximum-flow algorithm is efficient, requiring O(|E|) time if a depth-
first or breadth-first search is used to find an s− t path. But how many iterations are there?

Suppose all edges in the original network have integer capacities ≤ C. Then an inductive
argument shows that on each iteration of the algorithm, the flow is always an integer and
increases by an integer amount. Therefore, since the maximum flow is at most C|E| (why?),
it follows that the number of iterations is at most this much. But this is hardly a reassuring
bound: what if C is in the millions?

We examine this issue further in Exercise 7.31. It turns out that it is indeed possible to
construct bad examples in which the number of iterations is proportional to C, if s − t paths
are not carefully chosen. However, if paths are chosen in a sensible manner—in particular, by



216 Algorithms

using a breadth-first search, which finds the path with the fewest edges—then the number of
iterations is at most O(|V | · |E|), no matter what the capacities are. This latter bound gives
an overall running time of O(|V | · |E|2) for maximum flow.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 217

Figure 7.6 The max-flow algorithm applied to the network of Figure 7.4. At each iteration,
the current flow is shown on the left and the residual network on the right. The paths chosen
are shown in bold.

Current flow Residual graph

(a)

s

a

b

c

d

e

t s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

(b)

s

a

b

c

d

e

t

1

1

1

1

1

s

a

b

c

d

e

t3

4

10 1

1 1

21
2

1

1

1

4

1
4

(c)

s

a

b

c

d

e

t

1

1
1

2

2

2

s

a

b

c

d

e

t3

4

10 1

1 1

2

1

4

2

2
1

3
2

(d)

s

a

b

c

d

e

t1
1

2

2

5

4

3

s

a

b

c

d

e

t3

10 1

1 1

2

2

2
1

3
1

1

4

5



218 Algorithms

Figure 7.6 Continued

Current Flow Residual Graph

(e)

s

a

b

c

d

e

t1

2

2

54

5

1

s

a

b

c

d

e

t3

10 1

1 1

2

2
1

54

5

1
1

(f)

s

a

b

c

d

e

t1

2

2

54

5

21

1 s

a

b

c

d

e

t

10 1

1 1

2

2

54

5

2

2
1

1



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 219

Figure 7.7 An edge between two people means they like each other. Is it possible to pair
everyone up happily?

Alice

Beatrice

Carol

Danielle

GIRLS

Chet

Dan

Bob

Al

BOYS

7.3 Bipartite matching
Figure 7.7 shows a graph with four nodes on the left representing boys and four nodes on the
right representing girls.1 There is an edge between a boy and girl if they like each other (for
instance, Al likes all the girls). Is it possible to choose couples so that everyone has exactly one
partner, and it is someone they like? In graph-theoretic jargon, is there a perfect matching?

This matchmaking game can be reduced to the maximum-flow problem, and thereby to
linear programming! Create a new source node, s, with outgoing edges to all the boys; a new
sink node, t, with incoming edges from all the girls; and direct all the edges in the original
bipartite graph from boy to girl (Figure 7.8). Finally, give every edge a capacity of 1. Then
there is a perfect matching if and only if this network has a flow whose size equals the number
of couples. Can you find such a flow in the example?

Actually, the situation is slightly more complicated than just stated: what is easy to see is
that the optimum integer-valued flow corresponds to the optimum matching. We would be at
a bit of a loss interpreting a flow that ships 0.7 units along the edge Al–Carol, for instance!

1This kind of graph, in which the nodes can be partitioned into two groups such that all edges are between the
groups, is called bipartite.

Figure 7.8 A matchmaking network. Each edge has a capacity of one.

s t

Dan

Bob

Chet

Danielle

Beatrice

Alice

Carol

Al



220 Algorithms

Fortunately, the maximum-flow problem has the following property: if all edge capacities are
integers, then the optimal flow found by our algorithm is integral. We can see this directly
from the algorithm, which in such cases would increment the flow by an integer amount on
each iteration.

Hence integrality comes for free in the maximum-flow problem. Unfortunately, this is the
exception rather than the rule: as we will see in Chapter 8, it is a very difficult problem to
find the optimum solution (or for that matter, any solution) of a general linear program, if we
also demand that the variables be integers.

7.4 Duality
We have seen that in networks, flows are smaller than cuts, but the maximum flow and mini-
mum cut exactly coincide and each is therefore a certificate of the other’s optimality. Remark-
able as this phenomenon is, we now generalize it from maximum flow to any problem that can
be solved by linear programming! It turns out that every linear maximization problem has a
dual minimization problem, and they relate to each other in much the same way as flows and
cuts.

To understand what duality is about, recall our introductory LP with the two types of
chocolate:

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Simplex declares the optimum solution to be (x1, x2) = (100, 300), with objective value 1900.
Can this answer be checked somehow? Let’s see: suppose we take the first inequality and add
it to six times the second inequality. We get

x1 + 6x2 ≤ 2000.

This is interesting, because it tells us that it is impossible to achieve a profit of more than
2000. Can we add together some other combination of the LP constraints and bring this upper
bound even closer to 1900? After a little experimentation, we find that multiplying the three
inequalities by 0, 5, and 1, respectively, and adding them up yields

x1 + 6x2 ≤ 1900.

So 1900 must indeed be the best possible value! The multipliers (0, 5, 1) magically constitute a
certificate of optimality! It is remarkable that such a certificate exists for this LP—and even
if we knew there were one, how would we systematically go about finding it?



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 221

Let’s investigate the issue by describing what we expect of these three multipliers, call
them y1, y2, y3.

Multiplier Inequality
y1 x1 ≤ 200
y2 x2 ≤ 300
y3 x1 + x2 ≤ 400

To start with, these yi’s must be nonnegative, for otherwise they are unqualified to multiply
inequalities (multiplying an inequality by a negative number would flip the ≤ to ≥). After the
multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

We want the left-hand side to look like our objective function x1 + 6x2 so that the right-hand
side is an upper bound on the optimum solution. For this we need y1 + y3 to be 1 and y2 + y3 to
be 6. Come to think of it, it would be fine if y1 +y3 were larger than 1—the resulting certificate
would be all the more convincing. Thus, we get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3 if





y1, y2, y3 ≥ 0
y1 + y3 ≥ 1
y2 + y3 ≥ 6



 .

We can easily find y’s that satisfy the inequalities on the right by simply making them large
enough, for example (y1, y2, y3) = (5, 3, 6). But these particular multipliers would tell us that
the optimum solution of the LP is at most 200 · 5 + 300 · 3 + 400 · 6 = 4300, a bound that is far
too loose to be of interest. What we want is a bound that is as tight as possible, so we should
minimize 200y1 + 300y2 + 400y3 subject to the preceding inequalities. And this is a new linear
program!

Therefore, finding the set of multipliers that gives the best upper bound on our original
LP is tantamount to solving a new LP:

min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

By design, any feasible value of this dual LP is an upper bound on the original primal LP. So
if we somehow find a pair of primal and dual feasible values that are equal, then they must
both be optimal. Here is just such a pair:

Primal : (x1, x2) = (100, 300); Dual : (y1, y2, y3) = (0, 5, 1).

They both have value 1900, and therefore they certify each other’s optimality (Figure 7.9).

Amazingly, this is not just a lucky example, but a general phenomenon. To start with, the
preceding construction—creating a multiplier for each primal constraint; writing a constraint



222 Algorithms

Figure 7.9 By design, dual feasible values ≥ primal feasible values. The duality theorem
tells us that moreover their optima coincide.

Primal
Primal feasible

This duality gap is zero

opt Dual feasible Objective
value

opt
Dual

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP:

max cTx

Ax ≤ b

x ≥ 0

Dual LP:

min yT b

yT A ≥ cT

y ≥ 0

in the dual for every variable of the primal, in which the sum is required to be above the
objective coefficient of the corresponding primal variable; and optimizing the sum of the mul-
tipliers weighted by the primal right-hand sides—can be carried out for any LP, as shown in
Figure 7.10, and in even greater generality in Figure 7.11. The second figure has one notewor-
thy addition: if the primal has an equality constraint, then the corresponding multiplier (or
dual variable) need not be nonnegative, because the validity of equations is preserved when
multiplied by negative numbers. So, the multipliers of equations are unrestricted variables.
Notice also the simple symmetry between the two LPs, in that the matrix A = (aij) defines
one primal constraint with each of its rows, and one dual constraint with each of its columns.

By construction, any feasible solution of the dual is an upper bound on any feasible solution
of the primal. But moreover, their optima coincide!

Duality theorem If a linear program has a bounded optimum, then so does its dual, and the
two optimum values coincide.

When the primal is the LP that expresses the max-flow problem, it is possible to assign
interpretations to the dual variables that show the dual to be none other than the minimum-
cut problem (Exercise 7.25). The relation between flows and cuts is therefore just a specific
instance of the duality theorem. And in fact, the proof of this theorem falls out of the simplex
algorithm, in much the same way as the max-flow min-cut theorem fell out of the analysis of
the max-flow algorithm.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 223

Figure 7.11 In the most general case of linear programming, we have a set I of inequalities
and a set E of equalities (a total of m = |I| + |E| constraints) over n variables, of which a
subset N are constrained to be nonnegative. The dual has m = |I| + |E| variables, of which
only those corresponding to I have nonnegativity constraints.

Primal LP:

max c1x1 + · · · + cnxn

ai1x1 + · · ·+ ainxn ≤ bi for i ∈ I
ai1x1 + · · · + ainxn = bi for i ∈ E

xj ≥ 0 for j ∈ N

Dual LP:

min b1y1 + · · ·+ bmym

a1jy1 + · · ·+ amjym ≥ cj for j ∈ N
a1jy1 + · · ·+ amjym = cj for j 6∈ N

yi ≥ 0 for i ∈ I

Visualizing duality
One can solve the shortest-path problem by the following “analog” device: Given a weighted
undirected graph, build a physical model of it in which each edge is a string of length equal
to the edge’s weight, and each node is a knot at which the appropriate endpoints of strings
are tied together. Then to find the shortest path from s to t, just pull s away from t until the
gadget is taut. It is intuitively clear that this finds the shortest path from s to t.

S

D C

AB

T

There is nothing remarkable or surprising about all this until we notice the following:
the shortest-path problem is a minimization problem, right? Then why are we pulling s
away from t, an act whose purpose is, obviously, maximization? Answer: By pulling s away
from t we solve the dual of the shortest-path problem! This dual has a very simple form
(Exercise 7.28), with one variable xu for each node u:

max xS − xT

|xu − xv| ≤ wuv for all edges {u, v}

In words, the dual problem is to stretch s and t as far apart as possible, subject to the
constraint that the endpoints of any edge {u, v} are separated by a distance of at most wuv.



224 Algorithms

7.5 Zero-sum games
We can represent various conflict situations in life by matrix games. For example, the school-
yard rock-paper-scissors game is specified by the payoff matrix illustrated here. There are two
players, called Row and Column, and they each pick a move from {r, p, s}. They then look up
the matrix entry corresponding to their moves, and Column pays Row this amount. It is Row’s
gain and Column’s loss.

G =

Column
r p s

r 0 −1 1
p 1 0 −1

Ro
w

s −1 1 0

Now suppose the two of them play this game repeatedly. If Row always makes the same
move, Column will quickly catch on and will always play the countermove, winning every
time. Therefore Row should mix things up: we can model this by allowing Row to have a
mixed strategy, in which on each turn she plays r with probability x1, p with probability x2,
and s with probability x3. This strategy is specified by the vector x = (x1, x2, x3), positive
numbers that add up to 1. Similarly, Column’s mixed strategy is some y = (y1, y2, y3).2

On any given round of the game, there is an xiyj chance that Row and Column will play
the ith and jth moves, respectively. Therefore the expected (average) payoff is

∑

i,j

Gij · Prob[Row plays i, Column plays j] =
∑

i,j

Gijxiyj.

Row wants to maximize this, while Column wants to minimize it. What payoffs can they hope
to achieve in rock-paper-scissors? Well, suppose for instance that Row plays the “completely
random” strategy x = (1/3, 1/3, 1/3). If Column plays r, then the average payoff (reading the
first column of the game matrix) will be

1

3
· 0 +

1

3
· 1 +

1

3
· −1 = 0.

This is also true if Column plays p, or s. And since the payoff of any mixed strategy (y1, y2, y3)
is just a weighted average of the individual payoffs for playing r, p, and s, it must also be zero.
This can be seen directly from the preceding formula,

∑

i,j

Gijxiyj =
∑

i,j

Gij ·
1

3
yj =

∑

j

yj

(
∑

i

1

3
Gij

)
=

∑

j

yj · 0 = 0,

where the second-to-last equality is the observation that every column of G adds up to zero.
Thus by playing the “completely random” strategy, Row forces an expected payoff of zero, no
matter what Column does. This means that Column cannot hope for a negative (expected)

2Also of interest are scenarios in which players alter their strategies from round to round, but these can get
very complicated and are a vast subject unto themselves.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 225

payoff (remember that he wants the payoff to be as small as possible). But symmetrically,
if Column plays the completely random strategy, he also forces an expected payoff of zero,
and thus Row cannot hope for a positive (expected) payoff. In short, the best each player can
do is to play completely randomly, with an expected payoff of zero. We have mathematically
confirmed what you knew all along about rock-paper-scissors!

Let’s think about this in a slightly different way, by considering two scenarios:

1. First Row announces her strategy, and then Column picks his.

2. First Column announces his strategy, and then Row chooses hers.

We’ve seen that the average payoff is the same (zero) in either case if both parties play op-
timally. But this might well be due to the high level of symmetry in rock-paper-scissors. In
general games, we’d expect the first option to favor Column, since he knows Row’s strategy
and can fully exploit it while choosing his own. Likewise, we’d expect the second option to
favor Row. Amazingly, this is not the case: if both play optimally, then it doesn’t hurt a player
to announce his or her strategy in advance! What’s more, this remarkable property is a con-
sequence of—and in fact equivalent to—linear programming duality.

Let’s investigate this with a nonsymmetric game. Imagine a presidential election scenario
in which there are two candidates for office, and the moves they make correspond to campaign
issues on which they can focus (the initials stand for economy, society, morality, and tax cut).
The payoff entries are millions of votes lost by Column.

G =

m t

e 3 −1
s −2 1

Suppose Row announces that she will play the mixed strategy x = (1/2, 1/2). What should
Column do? Move m will incur an expected loss of 1/2, while t will incur an expected loss of 0.
The best response of Column is therefore the pure strategy y = (0, 1).

More generally, once Row’s strategy x = (x1, x2) is fixed, there is always a pure strategy
that is optimal for Column: either move m, with payoff 3x1 − 2x2, or t, with payoff −x1 + x2,
whichever is smaller. After all, any mixed strategy y is a weighted average of these two pure
strategies and thus cannot beat the better of the two.

Therefore, if Row is forced to announce x before Column plays, she knows that his best
response will achieve an expected payoff of min{3x1 − 2x2,−x1 + x2}. She should choose x

defensively to maximize her payoff against this best response:

Pick (x1, x2) that maximizes min{3x1 − 2x2,−x1 + x2}︸ ︷︷ ︸
payoff from Column’s best response to x

This choice of xi’s gives Row the best possible guarantee about her expected payoff. And we
will now see that it can be found by an LP! The main trick is to notice that for fixed x1 and x2

the following are equivalent:



226 Algorithms

z = min{3x1 − 2x2,−x1 + x2}
max z

z ≤ 3x1 − 2x2

z ≤ −x1 + x2

And Row needs to choose x1 and x2 to maximize this z.
max z

−3x1 + 2x2 + z ≤ 0
x1 − x2 + z ≤ 0
x1 + x2 = 1

x1, x2 ≥ 0

Symmetrically, if Column has to announce his strategy first, his best bet is to choose the
mixed strategy y that minimizes his loss under Row’s best response, in other words,

Pick (y1, y2) that minimizes max{3y1 − y2,−2y1 + y2}︸ ︷︷ ︸
outcome of Row’s best response to y

In LP form, this is
min w

−3y1 + y2 + w ≥ 0
2y1 − y2 + w ≥ 0
y1 + y2 = 1

y1, y2 ≥ 0

The crucial observation now is that these two LPs are dual to each other (see Figure 7.11)!
Hence, they have the same optimum, call it V .

Let us summarize. By solving an LP, Row (the maximizer) can determine a strategy for
herself that guarantees an expected outcome of at least V no matter what Column does. And
by solving the dual LP, Column (the minimizer) can guarantee an expected outcome of at most
V , no matter what Row does. It follows that this is the uniquely defined optimal play: a priori
it wasn’t even certain that such a play existed. V is known as the value of the game. In our
example, it is 1/7 and is realized when Row plays her optimum mixed strategy (3/7, 4/7) and
Column plays his optimum mixed strategy (2/7, 5/7).

This example is easily generalized to arbitrary games and shows the existence of mixed
strategies that are optimal for both players and achieve the same value—a fundamental result
of game theory called the min-max theorem. It can be written in equation form as follows:

max
x

min
y

∑

i,j

Gijxiyj = min
y

max
x

∑

i,j

Gijxiyj.

This is surprising, because the left-hand side, in which Row has to announce her strategy
first, should presumably be better for Column than the right-hand side, in which he has to go
first. Duality equalizes the two, as it did with maximum flows and minimum cuts.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.

At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-
tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region
while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?

Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in
n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space R

n, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.

But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the



228 Algorithms

hyperplanes corresponding to inequalities 4© and 6© do not define a vertex, because their
intersection is not just a single point but an entire line.

Let’s make this definition precise.

Pick a subset of the inequalities. If there is a unique point that satisfies them with
equality, and this point happens to be feasible, then it is a vertex.

How many equations are needed to uniquely identify a point? When there are n variables, we
need at least n linear equations if we want a unique solution. On the other hand, having more
than n equations is redundant: at least one of them can be rewritten as a linear combination
of the others and can therefore be disregarded. In short,

Each vertex is specified by a set of n inequalities.3

A notion of neighbor now follows naturally.

Two vertices are neighbors if they have n− 1 defining inequalities in common.

In Figure 7.12, for instance, vertices A and C share the two defining inequalities { 3©, 7©} and
are thus neighbors.

7.6.2 The algorithm
On each iteration, simplex has two tasks:

1. Check whether the current vertex is optimal (and if so, halt).

2. Determine where to move next.

As we will see, both tasks are easy if the vertex happens to be at the origin. And if the vertex
is elsewhere, we will transform the coordinate system to move it to the origin!

First let’s see why the origin is so convenient. Suppose we have some generic LP

max cT x

Ax ≤ b

x ≥ 0

where x is the vector of variables, x = (x1, . . . , xn). Suppose the origin is feasible. Then it is
certainly a vertex, since it is the unique point at which the n inequalities {x1 ≥ 0, . . . , xn ≥ 0}
are tight. Now let’s solve our two tasks. Task 1:

The origin is optimal if and only if all ci ≤ 0.
3There is one tricky issue here. It is possible that the same vertex might be generated by different subsets

of inequalities. In Figure 7.12, vertex B is generated by { 2©, 3©, 4©}, but also by { 2©, 4©, 5©}. Such vertices are
called degenerate and require special consideration. Let’s assume for the time being that they don’t exist, and
we’ll return to them later.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 229

If all ci ≤ 0, then considering the constraints x ≥ 0, we can’t hope for a better objective value.
Conversely, if some ci > 0, then the origin is not optimal, since we can increase the objective
function by raising xi.

Thus, for task 2, we can move by increasing some xi for which ci > 0. How much can
we increase it? Until we hit some other constraint. That is, we release the tight constraint
xi ≥ 0 and increase xi until some other inequality, previously loose, now becomes tight. At
that point, we again have exactly n tight inequalities, so we are at a new vertex.

For instance, suppose we’re dealing with the following linear program.

max 2x1 + 5x2

2x1 − x2 ≤ 4 1©
x1 + 2x2 ≤ 9 2©
−x1 + x2 ≤ 3 3©

x1 ≥ 0 4©
x2 ≥ 0 5©

Simplex can be started at the origin, which is specified by constraints 4© and 5©. To move, we
release the tight constraint x2 ≥ 0. As x2 is gradually increased, the first constraint it runs
into is −x1 + x2 ≤ 3, and thus it has to stop at x2 = 3, at which point this new inequality is
tight. The new vertex is thus given by 3© and 4©.

So we know what to do if we are at the origin. But what if our current vertex u is else-
where? The trick is to transform u into the origin, by shifting the coordinate system from the
usual (x1, . . . , xn) to the “local view” from u. These local coordinates consist of (appropriately
scaled) distances y1, . . . , yn to the n hyperplanes (inequalities) that define and enclose u:

y2
y1

x

u

Specifically, if one of these enclosing inequalities is ai · x ≤ bi, then the distance from a point
x to that particular “wall” is

yi = bi − ai · x.

The n equations of this type, one per wall, define the yi’s as linear functions of the xi’s, and
this relationship can be inverted to express the xi’s as a linear function of the yi’s. Thus
we can rewrite the entire LP in terms of the y’s. This doesn’t fundamentally change it (for
instance, the optimal value stays the same), but expresses it in a different coordinate frame.
The revised “local” LP has the following three properties:



230 Algorithms

1. It includes the inequalities y ≥ 0, which are simply the transformed versions of the
inequalities defining u.

2. u itself is the origin in y-space.

3. The cost function becomes max cu + c̃T y, where cu is the value of the objective function
at u and c̃ is a transformed cost vector.

In short, we are back to the situation we know how to handle! Figure 7.13 shows this algo-
rithm in action, continuing with our earlier example.

The simplex algorithm is now fully defined. It moves from vertex to neighboring vertex,
stopping when the objective function is locally optimal, that is, when the coordinates of the
local cost vector are all zero or negative. As we’ve just seen, a vertex with this property must
also be globally optimal. On the other hand, if the current vertex is not locally optimal, then
its local coordinate system includes some dimension along which the objective function can be
improved, so we move along this direction—along this edge of the polyhedron—until we reach
a neighboring vertex. By the nondegeneracy assumption (see footnote 3 in Section 7.6.1), this
edge has nonzero length, and so we strictly improve the objective value. Thus the process
must eventually halt.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 231

Figure 7.13 Simplex in action.

Initial LP:

max 2x1 + 5x2

2x1 − x2 ≤ 4 1©
x1 + 2x2 ≤ 9 2©
−x1 + x2 ≤ 3 3©

x1 ≥ 0 4©
x2 ≥ 0 5©

Current vertex: { 4©, 5©} (origin).
Objective value: 0.

Move: increase x2.
5© is released, 3© becomes tight. Stop at x2 = 3.

New vertex { 4©, 3©} has local coordinates (y1, y2):

y1 = x1, y2 = 3 + x1 − x2

Rewritten LP:

max 15 + 7y1 − 5y2

y1 + y2 ≤ 7 1©
3y1 − 2y2 ≤ 3 2©

y2 ≥ 0 3©
y1 ≥ 0 4©

−y1 + y2 ≤ 3 5©

Current vertex: { 4©, 3©}.
Objective value: 15.

Move: increase y1.
4© is released, 2© becomes tight. Stop at y1 = 1.

New vertex { 2©, 3©} has local coordinates (z1, z2):

z1 = 3− 3y1 + 2y2, z2 = y2

Rewritten LP:

max 22− 7
3z1 − 1

3z2

− 1
3z1 + 5

3z2 ≤ 6 1©
z1 ≥ 0 2©
z2 ≥ 0 3©

1
3z1 − 2

3z2 ≤ 1 4©
1
3z1 + 1

3z2 ≤ 4 5©

Current vertex: { 2©, 3©}.
Objective value: 22.

Optimal: all ci < 0.

Solve 2©, 3© (in original LP) to get optimal solution
(x1, x2) = (1, 4).

{ 1©, 2©}
{ 3©, 4©}

{ 2©, 3©}

y1

x2

Increase

Increase

{ 1©, 5©}{ 4©, 5©}



232 Algorithms

7.6.3 Loose ends
There are several important issues in the simplex algorithm that we haven’t yet mentioned.

The starting vertex. How do we find a vertex at which to start simplex? In our 2D and
3D examples we always started at the origin, which worked because the linear programs
happened to have inequalities with positive right-hand sides. In a general LP we won’t always
be so fortunate. However, it turns out that finding a starting vertex can be reduced to an LP
and solved by simplex!

To see how this is done, start with any linear program in standard form (recall Sec-
tion 7.1.4), since we know LPs can always be rewritten this way.

min cTx such that Ax = b and x ≥ 0.

We first make sure that the right-hand sides of the equations are all nonnegative: if bi < 0,
just multiply both sides of the ith equation by −1.

Then we create a new LP as follows:
• Create m new artificial variables z1, . . . , zm ≥ 0, where m is the number of equations.

• Add zi to the left-hand side of the ith equation.

• Let the objective, to be minimized, be z1 + z2 + · · · + zm.
For this new LP, it’s easy to come up with a starting vertex, namely, the one with zi = bi for
all i and all other variables zero. Therefore we can solve it by simplex, to obtain the optimum
solution.

There are two cases. If the optimum value of z1 + · · ·+ zm is zero, then all zi’s obtained by
simplex are zero, and hence from the optimum vertex of the new LP we get a starting feasible
vertex of the original LP, just by ignoring the zi’s. We can at last start simplex!

But what if the optimum objective turns out to be positive? Let us think. We tried to
minimize the sum of the zi’s, but simplex decided that it cannot be zero. But this means that
the original linear program is infeasible: it needs some nonzero zi’s to become feasible. This
is how simplex discovers and reports that an LP is infeasible.

Degeneracy. In the polyhedron of Figure 7.12 vertex B is degenerate. Geometrically, this
means that it is the intersection of more than n = 3 faces of the polyhedron (in this case,
2©, 3©, 4©, 5©). Algebraically, it means that if we choose any one of four sets of three inequal-

ities ({ 2©, 3©, 4©}, { 2©, 3©, 5©}, { 2©, 4©, 5©}, and { 3©, 4©, 5©}) and solve the corresponding system
of three linear equations in three unknowns, we’ll get the same solution in all four cases:
(0, 300, 100). This is a serious problem: simplex may return a suboptimal degenerate vertex
simply because all its neighbors are identical to it and thus have no better objective. And if
we modify simplex so that it detects degeneracy and continues to hop from vertex to vertex
despite lack of any improvement in the cost, it may end up looping forever.

One way to fix this is by a perturbation: change each bi by a tiny random amount to bi± εi.
This doesn’t change the essence of the LP since the εi’s are tiny, but it has the effect of differ-
entiating between the solutions of the linear systems. To see why geometrically, imagine that



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 233

the four planes 2©, 3©, 4©, 5© were jolted a little. Wouldn’t vertex B split into two vertices, very
close to one another?

Unboundedness. In some cases an LP is unbounded, in that its objective function can be
made arbitrarily large (or small, if it’s a minimization problem). If this is the case, simplex
will discover it: in exploring the neighborhood of a vertex, it will notice that taking out an
inequality and adding another leads to an underdetermined system of equations that has an
infinity of solutions. And in fact (this is an easy test) the space of solutions contains a whole
line across which the objective can become larger and larger, all the way to ∞. In this case
simplex halts and complains.

7.6.4 The running time of simplex
What is the running time of simplex, for a generic linear program

max cT x such that Ax ≤ 0 and x ≥ 0,

where there are n variables and A contains m inequality constraints? Since it is an iterative
algorithm that proceeds from vertex to vertex, let’s start by computing the time taken for a
single iteration. Suppose the current vertex is u. By definition, it is the unique point at which
n inequality constraints are satisfied with equality. Each of its neighbors shares n−1 of these
inequalities, so u can have at most n ·m neighbors: choose which inequality to drop and which
new one to add.

A naive way to perform an iteration would be to check each potential neighbor to see
whether it really is a vertex of the polyhedron and to determine its cost. Finding the cost is
quick, just a dot product, but checking whether it is a true vertex involves solving a system of
n equations in n unknowns (that is, satisfying the n chosen inequalities exactly) and checking
whether the result is feasible. By Gaussian elimination (see the following box) this takes
O(n3) time, giving an unappetizing running time of O(mn4) per iteration.

Fortunately, there is a much better way, and this mn4 factor can be improved to mn, mak-
ing simplex a practical algorithm. Recall our earlier discussion (Section 7.6.2) about the local
view from vertex u. It turns out that the per-iteration overhead of rewriting the LP in terms
of the current local coordinates is just O((m + n)n); this exploits the fact that the local view
changes only slightly between iterations, in just one of its defining inequalities.

Next, to select the best neighbor, we recall that the (local view of) the objective function is
of the form “max cu+c̃·y” where cu is the value of the objective function at u. This immediately
identifies a promising direction to move: we pick any c̃i > 0 (if there is none, then the current
vertex is optimal and simplex halts). Since the rest of the LP has now been rewritten in terms
of the y-coordinates, it is easy to determine how much yi can be increased before some other
inequality is violated. (And if we can increase yi indefinitely, we know the LP is unbounded.)

It follows that the running time per iteration of simplex is just O(mn). But how many
iterations could there be? Naturally, there can’t be more than

(m+n
n

)
, which is an upper bound

on the number of vertices. But this upper bound is exponential in n. And in fact, there are
examples of LPs for which simplex does indeed take an exponential number of iterations. In



234 Algorithms

other words, simplex is an exponential-time algorithm. However, such exponential examples
do not occur in practice, and it is this fact that makes simplex so valuable and so widely used.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 235

Gaussian elimination
Under our algebraic definition, merely writing down the coordinates of a vertex involves
solving a system of linear equations. How is this done?

We are given a system of n linear equations in n unknowns, say n = 4 and

x1 − 2x3 = 2
x2 + x3 = 3

x1 + x2 − x4 = 4
x2 + 3x3 + x4 = 5

The high school method for solving such systems is to repeatedly apply the following rule:
if we add a multiple of one equation to another equation, the overall system of equations
remains equivalent. For example, adding −1 times the first equation to the third one, we get
the equivalent system

x1 − 2x3 = 2
x2 + x3 = 3
x2 + 2x3 − x4 = 2
x2 + 3x3 + x4 = 5

This transformation is clever in the following sense: it eliminates the variable x1 from the
third equation, leaving just one equation with x1. In other words, ignoring the first equation,
we have a system of three equations in three unknowns: we decreased n by 1! We can solve
this smaller system to get x2, x3, x4, and then plug these into the first equation to get x1.

This suggests an algorithm—once more due to Gauss.

procedure gauss(E,X)
Input: A system E = {e1, . . . , en} of equations in n unknowns X = {x1, . . . , xn}:

e1 : a11x1 + a12x2 + · · ·+ a1nxn = b1; · · · ; en : an1x1 + an2x2 + · · ·+ annxn = bn
Output: A solution of the system, if one exists

if all coefficients ai1 are zero:
halt with message ‘‘either infeasible or not linearly independent’’

if n = 1: return b1/a11

choose the coefficient ap1 of largest magnitude, and swap equations e1, ep

for i = 2 to n:
ei = ei − (ai1/a11) · e1

(x2, . . . , xn) = gauss(E − {e1}, X − {x1})
x1 = (b1 −

∑
j>1 a1jxj)/a11

return (x1, . . . , xn)

(When choosing the equation to swap into first place, we pick the one with largest |ap1| for
reasons of numerical accuracy; after all, we will be dividing by ap1.)

Gaussian elimination uses O(n2) arithmetic operations to reduce the problem size from
n to n− 1, and thus uses O(n3) operations overall. To show that this is also a good estimate
of the total running time, we need to argue that the numbers involved remain polynomi-
ally bounded—for instance, that the solution (x1, . . . , xn) does not require too much more
precision to write down than the original coefficients aij and bi. Do you see why this is true?



236 Algorithms

Linear programming in polynomial time
Simplex is not a polynomial time algorithm. Certain rare kinds of linear programs cause
it to go from one corner of the feasible region to a better corner and then to a still better
one, and so on for an exponential number of steps. For a long time, linear programming was
considered a paradox, a problem that can be solved in practice, but not in theory!

Then, in 1979, a young Soviet mathematician called Leonid Khachiyan came up with
the ellipsoid algorithm, one that is very different from simplex, extremely simple in its
conception (but sophisticated in its proof) and yet one that solves any linear program in
polynomial time. Instead of chasing the solution from one corner of the polyhedron to
the next, Khachiyan’s algorithm confines it to smaller and smaller ellipsoids (skewed high-
dimensional balls). When this algorithm was announced, it became a kind of “mathematical
Sputnik,” a splashy achievement that had the U.S. establishment worried, in the height of
the Cold War, about the possible scientific superiority of the Soviet Union. The ellipsoid
algorithm turned out to be an important theoretical advance, but did not compete well with
simplex in practice. The paradox of linear programming deepened: A problem with two
algorithms, one that is efficient in theory, and one that is efficient in practice!

A few years later Narendra Karmarkar, a graduate student at UC Berkeley, came up
with a completely different idea, which led to another provably polynomial algorithm for
linear programming. Karmarkar’s algorithm is known as the interior point method, because
it does just that: it dashes to the optimum corner not by hopping from corner to corner on
the surface of the polyhedron like simplex does, but by cutting a clever path in the interior
of the polyhedron. And it does perform well in practice.

But perhaps the greatest advance in linear programming algorithms was not
Khachiyan’s theoretical breakthrough or Karmarkar’s novel approach, but an unexpected
consequence of the latter: the fierce competition between the two approaches, simplex and
interior point, resulted in the development of very fast code for linear programming.

7.7 Postscript: circuit evaluation

The importance of linear programming stems from the astounding variety of problems that
reduce to it and thereby bear witness to its expressive power. In a sense, this next one is the
ultimate application.

We are given a Boolean circuit, that is, a dag of gates of the following types.

• Input gates have indegree zero, with value true or false.

• AND gates and OR gates have indegree 2.

• NOT gates have indegree 1.

In addition, one of the gates is designated as the output. Here’s an example.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 237

true

AND

NOT

AND

OR

OR NOT

output

false true

The CIRCUIT VALUE problem is the following: when the laws of Boolean logic are applied to
the gates in topological order, does the output evaluate to true?

There is a simple, automatic way of translating this problem into a linear program. Create
a variable xg for each gate g, with constraints 0 ≤ xg ≤ 1. Add additional constraints for each
type of gate:

gate g
g g

xg = 1− xh

AND NOTOR

xg ≤ xh

xg ≤ xh′

xg ≥ xh

xg ≥ xh′

xg ≤ xh + xh′

h hh′ h′ h

xg ≥ xh + xh′ − 1

falsetrue

g

xg = 1 xg = 0

g

These constraints force all the gates to take on exactly the right values—0 for false, and 1
for true. We don’t need to maximize or minimize anything, and we can read the answer off
from the variable xo corresponding to the output gate.

This is a straightforward reduction to linear programming, from a problem that may not
seem very interesting at first. However, the CIRCUIT VALUE problem is in a sense the most
general problem solvable in polynomial time! After all, any algorithm will eventually run on
a computer, and the computer is ultimately a Boolean combinational circuit implemented on
a chip. If the algorithm runs in polynomial time, it can be rendered as a Boolean circuit con-
sisting of polynomially many copies of the computer’s circuit, one per unit of time, with the
values of the gates in one layer used to compute the values for the next. Hence, the fact that
CIRCUIT VALUE reduces to linear programming means that all problems that can be solved in
polynomial time do!



238 Algorithms

In our next topic, NP-completeness, we shall see that many hard problems reduce, much
the same way, to integer programming, linear programming’s difficult twin.

Another parting thought: by what other means can the circuit evaluation problem be
solved? Let’s think—a circuit is a dag. And what algorithmic technique is most appropriate
for solving problems on dags? That’s right: dynamic programming! Together with linear
programming, the world’s two most general algorithmic techniques.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 239

Exercises
7.1. Consider the following linear program.

maximize 5x+ 3y

5x− 2y ≥ 0

x+ y ≤ 7

x ≤ 5

x ≥ 0

y ≥ 0

Plot the feasible region and identify the optimal solution.
7.2. Duckwheat is produced in Kansas and Mexico and consumed in New York and California. Kansas

produces 15 shnupells of duckwheat and Mexico 8. Meanwhile, New York consumes 10 shnupells
and California 13. The transportation costs per shnupell are $4 from Mexico to New York, $1
from Mexico to California, $2 from Kansas to New York, and $3 and from Kansas to California.
Write a linear program that decides the amounts of duckwheat (in shnupells and fractions of a
shnupell) to be transported from each producer to each consumer, so as to minimize the overall
transportation cost.

7.3. A cargo plane can carry a maximum weight of 100 tons and a maximum volume of 60 cubic
meters. There are three materials to be transported, and the cargo company may choose to carry
any amount of each, upto the maximum available limits given below.

• Material 1 has density 2 tons/cubic meter, maximum available amount 40 cubic meters, and
revenue $1,000 per cubic meter.

• Material 2 has density 1 ton/cubic meter, maximum available amount 30 cubic meters, and
revenue $1,200 per cubic meter.

• Material 3 has density 3 tons/cubic meter, maximum available amount 20 cubic meters, and
revenue $12,000 per cubic meter.

Write a linear program that optimizes revenue within the constraints.
7.4. Moe is deciding how much Regular Duff beer and how much Duff Strong beer to order each week.

Regular Duff costs Moe $1 per pint and he sells it at $2 per pint; Duff Strong costs Moe $1.50 per
pint and he sells it at $3 per pint. However, as part of a complicated marketing scam, the Duff
company will only sell a pint of Duff Strong for each two pints or more of Regular Duff that Moe
buys. Furthermore, due to past events that are better left untold, Duff will not sell Moe more
than 3,000 pints per week. Moe knows that he can sell however much beer he has. Formulate a
linear program for deciding how much Regular Duff and how much Duff Strong to buy, so as to
maximize Moe’s profit. Solve the program geometrically.

7.5. The Canine Products company offers two dog foods, Frisky Pup and Husky Hound, that are
made from a blend of cereal and meat. A package of Frisky Pup requires 1 pound of cereal and
1.5 pounds of meat, and sells for $7. A package of Husky Hound uses 2 pounds of cereal and
1 pound of meat, and sells for $6. Raw cereal costs $1 per pound and raw meat costs $2 per
pound. It also costs $1.40 to package the Frisky Pup and $0.60 to package the Husky Hound. A
total of 240,000 pounds of cereal and 180,000 pounds of meat are available each month. The only
production bottleneck is that the factory can only package 110,000 bags of Frisky Pup per month.
Needless to say, management would like to maximize profit.



240 Algorithms

(a) Formulate the problem as a linear program in two variables.
(b) Graph the feasible region, give the coordinates of every vertex, and circle the vertex maxi-

mizing profit. What is the maximum profit possible?
7.6. Give an example of a linear program in two variables whose feasible region is infinite, but such

that there is an optimum solution of bounded cost.
7.7. Find necessary and sufficient conditions on the reals a and b under which the linear program

max x+ y

ax+ by ≤ 1

x, y ≥ 0

(a) Is infeasible.
(b) Is unbounded.
(c) Has a unique optimal solution.

7.8. You are given the following points in the plane:

(1, 3), (2, 5), (3, 7), (5, 11), (7, 14), (8, 15), (10, 19).

You want to find a line ax + by = c that approximately passes through these points (no line is a
perfect fit). Write a linear program (you don’t need to solve it) to find the line that minimizes the
maximum absolute error,

max
1≤i≤7

|axi + byi − c|.

7.9. A quadratic programming problem seeks to maximize a quadratric objective function (with terms
like 3x2

1 or 5x1x2) subject to a set of linear constraints. Give an example of a quadratic program
in two variables x1, x2 such that the feasible region is nonempty and bounded, and yet none of
the vertices of this region optimize the (quadratic) objective.

7.10. For the following network, with edge capacities as shown, find the maximum flow from S to T ,
along with a matching cut.

A

B

C

G

T

D

E

F

4

1

6

10
2

20

2

5

1
10

5

4

12

6

2

S

7.11. Write the dual to the following linear program.

max x+ y

2x+ y ≤ 3

x+ 3y ≤ 5

x, y ≥ 0

Find the optimal solutions to both primal and dual LPs.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 241

7.12. For the linear program

max x1 − 2x3

x1 − x2 ≤ 1

2x2 − x3 ≤ 1

x1, x2, x3 ≥ 0

prove that the solution (x1, x2, x3) = (3/2, 1/2, 0) is optimal.

7.13. Matching pennies. In this simple two-player game, the players (call them R and C) each choose
an outcome, heads or tails. If both outcomes are equal, C gives a dollar to R; if the outcomes are
different, R gives a dollar to C.

(a) Represent the payoffs by a 2× 2 matrix.
(b) What is the value of this game, and what are the optimal strategies for the two players?

7.14. The pizza business in Little Town is split between two rivals, Tony and Joey. They are each
investigating strategies to steal business away from the other. Joey is considering either lowering
prices or cutting bigger slices. Tony is looking into starting up a line of gourmet pizzas, or offering
outdoor seating, or giving free sodas at lunchtime. The effects of these various strategies are
summarized in the following payoff matrix (entries are dozens of pizzas, Joey’s gain and Tony’s
loss).

TONY
Gourmet Seating Free soda

JOEY Lower price +2 0 −3
Bigger slices −1 −2 +1

For instance, if Joey reduces prices and Tony goes with the gourmet option, then Tony will lose 2
dozen pizzas worth of business to Joey.
What is the value of this game, and what are the optimal strategies for Tony and Joey?

7.15. Find the value of the game specified by the following payoff matrix.

0 0 −1 −1
0 1 −2 −1
−1 −1 1 1
−1 0 0 1

1 −2 0 −3
1 −1 −1 −1
0 −3 2 −1
0 −2 1 −1

(Hint: Consider the mixed strategies (1/3, 0, 0, 1/2, 1/6, 0, 0, 0) and (2/3, 0, 0, 1/3).)

7.16. A salad is any combination of the following ingredients: (1) tomato, (2) lettuce, (3) spinach, (4)
carrot, and (5) oil. Each salad must contain: (A) at least 15 grams of protein, (B) at least 2
and at most 6 grams of fat, (C) at least 4 grams of carbohydrates, (D) at most 100 milligrams of
sodium. Furthermore, (E) you do not want your salad to be more than 50% greens by mass. The
nutritional contents of these ingredients (per 100 grams) are



242 Algorithms

ingredient energy protein fat carbohydrate sodium
(kcal) (grams) (grams) (grams) (milligrams)

tomato 21 0.85 0.33 4.64 9.00
lettuce 16 1.62 0.20 2.37 8.00
spinach 371 12.78 1.58 74.69 7.00
carrot 346 8.39 1.39 80.70 508.20
oil 884 0.00 100.00 0.00 0.00

Find a linear programming applet on the Web and use it to make the salad with the fewest
calories under the nutritional constraints. Describe your linear programming formulation and
the optimal solution (the quantity of each ingredient and the value). Cite the Web resources that
you used.

7.17. Consider the following network (the numbers are edge capacities).

A

B

C

D

TS

7

6

3

4

2

2
5

9

(a) Find the maximum flow f and a minimum cut.
(b) Draw the residual graphGf (along with its edge capacities). In this residual network, mark

the vertices reachable from S and the vertices from which T is reachable.
(c) An edge of a network is called a bottleneck edge if increasing its capacity results in an

increase in the maximum flow. List all bottleneck edges in the above network.
(d) Give a very simple example (containing at most four nodes) of a network which has no

bottleneck edges.
(e) Give an efficient algorithm to identify all bottleneck edges in a network. (Hint: Start by

running the usual network flow algorithm, and then examine the residual graph.)

7.18. There are many common variations of the maximum flow problem. Here are four of them.

(a) There are many sources and many sinks, and we wish to maximize the total flow from all
sources to all sinks.

(b) Each vertex also has a capacity on the maximum flow that can enter it.
(c) Each edge has not only a capacity, but also a lower bound on the flow it must carry.
(d) The outgoing flow from each node u is not the same as the incoming flow, but is smaller by

a factor of (1− εu), where εu is a loss coefficient associated with node u.

Each of these can be solved efficiently. Show this by reducing (a) and (b) to the original max-flow
problem, and reducing (c) and (d) to linear programming.

7.19. Suppose someone presents you with a solution to a max-flow problem on some network. Give a
linear time algorithm to determine whether the solution does indeed give a maximum flow.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 243

7.20. Consider the following generalization of the maximum flow problem.
You are given a directed network G = (V,E) with edge capacities {ce}. Instead of a single (s, t)
pair, you are given multiple pairs (s1, t1), (s2, t2), . . . , (sk, tk), where the si are sources ofG and the
ti are sinks of G. You are also given k demands d1, . . . , dk. The goal is to find k flows f (1), . . . , f (k)

with the following properties:

• f (i) is a valid flow from si to ti.
• For each edge e, the total flow f

(1)
e + f

(2)
e + · · ·+ f

(k)
e does not exceed the capacity ce.

• The size of each flow f (i) is at least the demand di.
• The size of the total flow (the sum of the flows) is as large as possible.

How would you solve this problem?

7.21. An edge of a flow network is called critical if decreasing the capacity of this edge results in a
decrease in the maximum flow. Give an efficient algorithm that finds a critical edge in a network.

7.22. In a particular networkG = (V,E) whose edges have integer capacities ce, we have already found
the maximum flow f from node s to node t. However, we now find out that one of the capacity
values we used was wrong: for edge (u, v) we used cuv whereas it should have been cuv − 1. This
is unfortunate because the flow f uses that particular edge at full capacity: fuv = cuv.
We could redo the flow computation from scratch, but there’s a faster way. Show how a new
optimal flow can be computed in O(|V |+ |E|) time.

7.23. A vertex cover of an undirected graph G = (V,E) is a subset of the vertices which touches every
edge—that is, a subset S ⊂ V such that for each edge {u, v} ∈ E, one or both of u, v are in S.
Show that the problem of finding the minimum vertex cover in a bipartite graph reduces to max-
imum flow. (Hint: Can you relate this problem to the minimum cut in an appropriate network?)

7.24. Direct bipartite matching. We’ve seen how to find a maximum matching in a bipartite graph via
reduction to the maximum flow problem. We now develop a direct algorithm.
Let G = (V1∪V2, E) be a bipartite graph (so each edge has one endpoint in V1 and one endpoint in
V2), and let M ∈ E be a matching in the graph (that is, a set of edges that don’t touch). A vertex
is said to be covered by M if it is the endpoint of one of the edges in M . An alternating path is
a path of odd length that starts and ends with a non-covered vertex, and whose edges alternate
between M and E −M .

(a) In the bipartite graph below, a matching M is shown in bold. Find an alternating path.

A

B

C

D

E

F

G

H

I



244 Algorithms

(b) Prove that a matching M is maximal if and only if there does not exist an alternating path
with respect to it.

(c) Design an algorithm that finds an alternating path in O(|V | + |E|) time using a variant of
breadth-first search.

(d) Give a direct O(|V | · |E|) algorithm for finding a maximal matching in a bipartite graph.

7.25. The dual of maximum flow. Consider the following network with edge capacities.

S

B

T

A
1

3

2

1

1

(a) Write the problem of finding the maximum flow from S to T as a linear program.
(b) Write down the dual of this linear program. There should be a dual variable for each edge

of the network and for each vertex other than S, T .

Now we’ll solve the same problem in full generality. Recall the linear program for a general
maximum flow problem (Section 7.2).

(c) Write down the dual of this general flow LP, using a variable ye for each edge and xu for
each vertex u 6= s, t.

(d) Show that any solution to the general dual LP must satisfy the following property: for any
directed path from s to t in the network, the sum of the ye values along the path must be at
least 1.

(e) What are the intuitive meanings of the dual variables? Show that any s − t cut in the
network can be translated into a dual feasible solution whose cost is exactly the capacity of
that cut.

7.26. In a satisfiable system of linear inequalities

a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

we describe the jth inequality as forced-equal if it is satisfied with equality by every solution
x = (x1, . . . , xn) of the system. Equivalently,

∑
i ajixi ≤ bj is not forced-equal if there exists an x

that satisfies the whole system and such that
∑

i ajixi < bj .
For example, in

x1 + x2 ≤ 2

−x1 − x2 ≤ −2

x1 ≤ 1

−x2 ≤ 0



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 245

the first two inequalities are forced-equal, while the third and fourth are not. A solution x to
the system is called characteristic if, for every inequality I that is not forced-equal, x satisfies I
without equality. In the instance above, such a solution is (x1, x2) = (−1, 3), for which x1 < 1 and
−x2 < 0 while x1 + x2 = 2 and −x1 − x2 = −2.

(a) Show that any satisfiable system has a characteristic solution.
(b) Given a satisfiable system of linear inequalities, show how to use linear programming to

determine which inequalities are forced-equal, and to find a characteristic solution.

7.27. Show that the change-making problem (Exercise 6.17) can be formulated as an integer linear
program. Can we solve this program as an LP, in the certainty that the solution will turn out to
be integral (as in the case of bipartite matching)? Either prove it or give a counterexample.

7.28. A linear program for shortest path. Suppose we want to compute the shortest path from node s
to node t in a directed graph with edge lengths le > 0.

(a) Show that this is equivalent to finding an s − t flow f that minimizes
∑

e lefe subject to
size(f) = 1. There are no capacity constraints.

(b) Write the shortest path problem as a linear program.
(c) Show that the dual LP can be written as

max xs − xt

xu − xv ≤ luv for all (u, v) ∈ E

(d) An interpretation for the dual is given in the box on page 223. Why isn’t our dual LP
identical to the one on that page?

7.29. Hollywood. A film producer is seeking actors and investors for his new movie. There are n
available actors; actor i charges si dollars. For funding, there are m available investors. Investor
j will provide pj dollars, but only on the condition that certain actors Lj ⊆ {1, 2, . . . , n} are
included in the cast (all of these actors Lj must be chosen in order to receive funding from
investor j).
The producer’s profit is the sum of the payments from investors minus the payments to actors.
The goal is to maximize this profit.

(a) Express this problem as an integer linear program in which the variables take on values
{0, 1}.

(b) Now relax this to a linear program, and show that there must in fact be an integral optimal
solution (as is the case, for example, with maximum flow and bipartite matching).

7.30. Hall’s theorem. Returning to the matchmaking scenario of Section 7.3, suppose we have a bipar-
tite graph with boys on the left and an equal number of girls on the right. Hall’s theorem says
that there is a perfect matching if and only if the following condition holds: any subset S of boys
is connected to at least |S| girls.
Prove this theorem. (Hint: The max-flow min-cut theorem should be helpful.)

7.31. Consider the following simple network with edge capacities as shown.



246 Algorithms

S

B

T

A

1

1000

1000 1000

1000

(a) Show that, if the Ford-Fulkerson algorithm is run on this graph, a careless choice of updates
might cause it to take 1000 iterations. Imagine if the capacities were a million instead of
1000!

We will now find a strategy for choosing paths under which the algorithm is guaranteed to ter-
minate in a reasonable number of iterations.
Consider an arbitrary directed network (G = (V,E), s, t, {ce}) in which we want to find the max-
imum flow. Assume for simplicity that all edge capacities are at least 1, and define the capacity
of an s− t path to be the smallest capacity of its constituent edges. The fattest path from s to t is
the path with the most capacity.

(b) Show that the fattest s − t path in a graph can be computed by a variant of Dijkstra’s
algorithm.

(c) Show that the maximum flow in G is the sum of individual flows along at most |E| paths
from s to t.

(d) Now show that if we always increase flow along the fattest path in the residual graph, then
the Ford-Fulkerson algorithm will terminate in at most O(|E| logF ) iterations, where F is
the size of the maximum flow. (Hint: It might help to recall the proof for the greedy set
cover algorithm in Section 5.4.)

In fact, an even simpler rule—finding a path in the residual graph using breadth-first search—
guarantees that at most O(|V | · |E|) iterations will be needed.


