CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 A Reduction Warm-up

In the Undirected Rudrata path problem (aka the Hamiltonian Path Problem), we are given a graph
G with undirected edges as input and want to determine if there exists a path in G that uses every
vertex exactly once.

In the Longest Path in a DAG, we are given a DAG, and a variable k as input and want to determine
if there exists a path in the DAG that is of length k£ or more.

Is the following reduction correct? If so, provide a concise proof. If not, justify your answer and
provide a counter example.

Undirected Rudrata Path can be reduced to Longest Path in a DAG. Given the undirected graph G,
we will use DFS to find a traversal of G and assign directions to all the edges in G based on this
traversal. In other words, the edges will point in the same direction they were traversed and back
edges will be omitted, giving us a DAG. If the longest path in this DAG has |V| — 1 edges then there
must be a Rudrata path in G since any simple path with |V| — 1 edges must visit every vertex, so if
this is true, we can say there exists a Rudrata path in the original graph. Since running DFS takes
polynomial time (O(|V| + |E])), this reduction is valid.

Solution:

It is incorrect.

It is true that if the longest path in the DAG has length |[V| — 1 then there is a Rudrata path in G.
However, to prove a reduction correct, you have to prove both directions. That is, if you have
reduced problem A to problem B by transforming instance I to instance I’ then you should prove
that I has a solution if and only if I’ has a solution. In the above ”reduction,” one direction does
not hold. Specifically, if G has a Rudrata path then the DAG that we produce does not necessarily
have a path of length |V| — 1-it depends on how we choose directions for the edges.

For a concrete counterexample, consider the following graph:

CF—E®—©)—0®)

It is possible that when traversing this graph by DFS, node C' will be encountered before node B and
thus the DAG produced will be

which does not have a path of length 3 even though the original graph did have a Rudrata path.

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

2 California Cycle

Prove that the following problem is NP-hard.
Input: A directed graph G = (V, E) with each vertex colored blue or gold, i.e., V' = Viiue U Vgola.

Goal: Find a Californian cycle which is a directed cycle through all vertices in G that alternates
between blue and gold vertices.

Hint: Directed Rudrata Cycle.

Solution: We reduce Directed Rudrata Cycle to Californian Cycle, thus proving the NP-hardness of
Californian Cycle. Given a directed graph G = (V, E), we construct a new graph G’ = (V', E’) as
follows:

e V'’ contains two copies of the vertex set V. So, for each v € V, there’s a corresponding blue
node v, and a gold node v, in V.

e For each v € V, add an edge from vy, to v, in G'.

e For each (u,v) € E, add edge (ug,v) in G'.
Another way to view this is that for each node v € V', we are redirecting all its incoming nodes
to vy, and all its outgoing nodes originate from v, (in G').

To see why this works correctly, observe that every cycle in G, will have a corresponding cycle in G’
that alternates between blue and gold vertices. So if G contains a Rudrata cycle, then G’ will contain
a Californian cycle. Also, every edge in G’ that goes from a blue node to a gold node will have both
its end points correspond to the same vertex in G. So, G’ has a Californian cycle, we can ignore all
the blue-gold edges in that cycle and obtain a Rudrata cycle in G.

3 Cycle Cover

In the cycle cover problem, we have a directed graph G, and our goal is to find a set of directed cycles
C1,Cs,...Ck in G such that every vertex appears in exactly one cycle (a cycle cannot revisit vertices,
e.g. a > b—a— ¢ — aisnot avalid cycle, but a = b — ¢ — a is), or declare none exists.

In the bipartite perfect matching problem, we have a undirected bipartite graph (a graph where the
vertices can be split into L, R, and there are no edges between two vertices in L or two vertices in R),
and our goal is to find a set of edges in this graph such that every vertex is adjacent to exactly one
edge in the set, or declare none exists.

Give a reduction from cycle cover to bipartite perfect matching.

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

(Hint: In a cycle cover, every verter has one incoming and one outgoing edge.)

Solution: Given the cycle cover instance G, we create a bipartite graph G’ where L has one vertex
vy, for every vertex in G, and R has one vertex vg for every vertex in G. For an edge (u,v) in G, we
add an edge (ur,vR) in the bipartite graph. We claim that G has a cycle cover if and only if G’ has
a perfect matching.

If G has a cycle cover, then the corresponding edges in the bipartite graph are a bipartite perfect
matching: The cycle cover has exactly one edge entering each vertex so each vy has exactly one edge
adjacent to it, and the cycle cover has exactly one edge leaving each vertex, so each vy has exactly
one edge adjacent to it.

If G’ has a perfect matching, then G has a cycle cover, which is formed by taking the edges in G
corresponding to edges in G’: If we have e.g. the edges (ar,bgr), (br,cr),...,(21,ar) in the perfect
matching, we include the cycle a - b — ¢ — ...,z — a in G in the cycle cover. Since vy, and vy are
both adjacent to some edge, every vertex will be included in the corresponding cycle cover.

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

If there exists a polynomial reduction from problem A to problem B, problem B is at least as
hard as problem A. From this, we can define complexity class which sort of gauge "hardness’.

Complexity Definitions

e NP: a problem in which a potential solution can be verified in polynomial time.

e P: a problem which can be solved in polynomial time.

e NP-Complete: a problem in NP which all problems in NP can reduce to.

e NP-Hard: any problem which is at least as hard as an NP-Complete problem.
Prove a problem is NP-Complete
To prove a problem is NP-Complete, you must prove the problem is in NP and it is in NP-Hard.
To prove that a problem is in NP, you must show there exists a polynomial verifier for it.

To prove that a problem is NP hard, you can reduce an NP-Complete problem to your problem.

4 NP or not NP, that is the question

For the following questions, circle the (unique) condition that would make the statement true.

(a) If B is NP-complete, then for any problem A € NP, there exists a polynomial-time reduction
from A to B.

Always True True iff P = NP True iff P # NP Always False

Solution: Always True: this is the definition of NP-hard, and all NP-complete problems are
NP-hard

(b) If B is in NP, then for any problem A € P, there exists a polynomial-time reduction from A to
B.

Always True True iff P = NP True iff P £ NP Always False

Solution: Always true: since we have polynomial time for our reduction, we have enough time
to simply solve any instance of A during the reduction.

(¢) 2 SAT is NP-complete.

Always True True iff P = NP True iff P # NP Always False

Solution: True iff P = NP:

By definition, in order to be NP-Complete a problem must be in NP, and there must exist a
polynomial reduction from every problem in NP.

If P # NP, then there does not exist a polynomial time reduction from NP-Complete problems
like 3-SAT to 2-SAT.

If P = NP, then a polynomial reduction is as follows:

since P = NP there must exist a polynomial times algorithm to solve 3 — SAT. Thus, when we
are preprocessing 3-SAT we can solve for whether there exists a solution in the instance or not.
If the instance has a solution, then we will map it to an instance of 2— S AT that has a solution,

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

and if it doesn’t have a solution, we will map it to an instance that doesn’t have a solution.
Thus all problems in NP will have a polynomial time reduction to 2-SAT as all problems in NP
are reducible to 3-SAT.

Minimum Spanning Tree is in NP.

Always True True iff P = NP True iff P £ NP Always False

Solution: Always True. MST is solvable in polynomial time, which means it is verifiable in
polynomial time.

Note that explicitly, the decision problem would be ”does there exist a spanning tree whose
cost is less than a budget b7”.

5 Runtime of NP

True or False (with brief justification): Suppose we can show for some fixed k, an NP-complete problem
P has a time O(n*) algorithm. Then every problem in NP has a O(n*) time algorithm.

Solution: False. The reduction f; from an arbitary problem L € NP is guaranteed to run in time
O(n°t) and produce a problem f(z) of the NP-complete problem of size O(n°r) for constants ¢y, and
¢ . However, these can be arbitrarily larger than k.

	A Reduction Warm-up
	California Cycle
	Cycle Cover
	 NP or not NP, that is the question
	Runtime of NP

