
CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 A Reduction Warm-up

In the Undirected Rudrata path problem (aka the Hamiltonian Path Problem), we are given a graph
G with undirected edges as input and want to determine if there exists a path in G that uses every
vertex exactly once.

In the Longest Path in a DAG, we are given a DAG, and a variable k as input and want to determine
if there exists a path in the DAG that is of length k or more.

Is the following reduction correct? If so, provide a concise proof. If not, justify your answer and
provide a counter example.

Undirected Rudrata Path can be reduced to Longest Path in a DAG. Given the undirected graph G,
we will use DFS to find a traversal of G and assign directions to all the edges in G based on this
traversal. In other words, the edges will point in the same direction they were traversed and back
edges will be omitted, giving us a DAG. If the longest path in this DAG has |V | − 1 edges then there
must be a Rudrata path in G since any simple path with |V | − 1 edges must visit every vertex, so if
this is true, we can say there exists a Rudrata path in the original graph. Since running DFS takes
polynomial time (O(|V |+ |E|)), this reduction is valid.

1

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

2 California Cycle

Prove that the following problem is NP-hard.

Input: A directed graph G = (V,E) with each vertex colored blue or gold, i.e., V = Vblue ∪ Vgold.

Goal: Find a Californian cycle which is a directed cycle through all vertices in G that alternates
between blue and gold vertices.

Hint: Directed Rudrata Cycle.

3 Cycle Cover

In the cycle cover problem, we have a directed graph G, and our goal is to find a set of directed cycles
C1, C2, . . . Ck in G such that every vertex appears in exactly one cycle (a cycle cannot revisit vertices,
e.g. a → b → a → c → a is not a valid cycle, but a → b → c → a is), or declare none exists.

In the bipartite perfect matching problem, we have a undirected bipartite graph (a graph where the
vertices can be split into L,R, and there are no edges between two vertices in L or two vertices in R),
and our goal is to find a set of edges in this graph such that every vertex is adjacent to exactly one
edge in the set, or declare none exists.

Give a reduction from cycle cover to bipartite perfect matching.

(Hint: In a cycle cover, every vertex has one incoming and one outgoing edge.)

2

CS 170, Spring 2024 Discussion 11 P. Raghavendra and C. Borgs

If there exists a polynomial reduction from problem A to problem B, problem B is at least as
hard as problem A. From this, we can define complexity class which sort of gauge ’hardness’.

Complexity Definitions

• NP: a problem in which a potential solution can be verified in polynomial time.

• P: a problem which can be solved in polynomial time.

• NP-Complete: a problem in NP which all problems in NP can reduce to.

• NP-Hard: any problem which is at least as hard as an NP-Complete problem.

Prove a problem is NP-Complete
To prove a problem is NP-Complete, you must prove the problem is in NP and it is in NP-Hard.

To prove that a problem is in NP, you must show there exists a polynomial verifier for it.

To prove that a problem is NP hard, you can reduce an NP-Complete problem to your problem.

4 NP or not NP, that is the question

For the following questions, circle the (unique) condition that would make the statement true.

(a) If B is NP-complete, then for any problem A ∈ NP, there exists a polynomial-time reduction
from A to B.

Always True True iff P = NP True iff P ̸= NP Always False

(b) If B is in NP, then for any problem A ∈ P, there exists a polynomial-time reduction from A to
B.

Always True True iff P = NP True iff P ̸= NP Always False

(c) 2 SAT is NP-complete.

Always True True iff P = NP True iff P ̸= NP Always False

(d) Minimum Spanning Tree is in NP.

Always True True iff P = NP True iff P ̸= NP Always False

5 Runtime of NP

True or False (with brief justification): Suppose we can show for some fixed k, an NP-complete problem
P has a time O(nk) algorithm. Then every problem in NP has a O(nk) time algorithm.

3

	A Reduction Warm-up
	California Cycle
	Cycle Cover
	 NP or not NP, that is the question
	Runtime of NP

