
CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

In this class, we care a lot about the runtime of algorithms. However, we don’t care too much about
concrete performance on small input sizes (most algorithms do well on small inputs). Instead we want
to compare the asymptotic (i.e. long-term) growth of the runtimes.

Asymptotic Notation: The following are definitions for O(·),Θ(·), and Ω(·):

• f(n) = O(g(n)) if there exists a c > 0 where after large enough n, f(n) ≤ c · g(n).
(Asymptotically, f grows at most as much as g)

• f(n) = Ω(g(n)) if g(n) = O(f(n)). (Asymptotically, f grows at least as much as g)

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)). (Asymptotically, f and g grow at
the same rate)

If we compare these definitions to the order on the numbers, O is a lot like ≤, Ω is a lot like ≥, and
Θ is a lot like = (except all are with regard to asymptotic behavior).

1 Asymptotics and Limits

If we would like to prove asymptotic relations instead of just using them, we can use limits.

Asymptotic Limit Rules: If f(n), g(n) ≥ 0:

• If lim
n→∞

f(n)
g(n) < ∞, then f(n) = O(g(n)).

• If lim
n→∞

f(n)
g(n) = c, for some c > 0, then f(n) = Θ(g(n)).

• If lim
n→∞

f(n)
g(n) > 0, then f(n) = Ω(g(n)).

Note that these are all sufficient (and not necessary) conditions involving limits, and are not true
definitions of O, Θ, and Ω. We highly recommend checking on your own that these statements are
correct!)

(a) Prove that n3 = O(n4).

Solution:

lim
n→∞

n3

n4
= lim

n→∞

1

n
= 0

So f(n) = O(g(n))

1

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

(b) Find an f(n), g(n) ≥ 0 such that f(n) = O(g(n)), yet lim
n→∞

f(n)
g(n) ̸= 0.

Solution: Let f(n) = 3n and g(n) = 5n. Then lim
n→∞

f(n)
g(n) = 3

5 , meaning that f(n) = Θ(g(n)).

However, it’s still true in this case that f(n) = O(g(n)) (just by the definition of Θ).

(c) Prove that for any c > 0, we have log n = O(nc).

Hint: Use L’Hôpital’s rule: If lim
n→∞

f(n) = lim
n→∞

g(n) = ∞, then lim
n→∞

f(n)
g(n) = lim

n→∞
f ′(n)
g′(n) (if the

RHS exists)

Solution: By L’Hôpital’s rule,

lim
n→∞

log n

nc
= lim

n→∞

n−1

cnc−1
= lim

n→∞

1

cnc
= 0

Therefore, log n = O(nc).

(d) Find an f(n), g(n) ≥ 0 such that f(n) = O(g(n)), yet lim
n→∞

f(n)
g(n) does not exist. In this case,

you would be unable to use limits to prove f(n) = O(g(n)).

Hint: think about oscillating functions!

Solution: Let f(x) = x(sinx+1) and g(x) = x. As sinx+1 ≤ 2, we have that f(x) ≤ 2 · g(x)
for x ≥ 0, so f(x) = O(g(x)).

However, if we attempt to evaluate the limit, lim
x→∞

x(sin x+1)
x = lim

x→∞
sinx + 1, which does not

exist (sin oscillates forever).

2

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

2 Asymptotic Complexity Comparisons

(a) Order the following functions so that for all i, j, if fi comes before fj in the order then fi = O(fj).
Do not justify your answers.

• f1(n) = 3n

• f2(n) = n
1
3

• f3(n) = 12

• f4(n) = 2log2 n

• f5(n) =
√
n

• f6(n) = 2n

• f7(n) = log2 n

• f8(n) = 2
√
n

• f9(n) = n3

As an answer you may just write the functions as a list, e.g. f8, f9, f1, . . .

Solution: f3, f7, f2, f5, f4, f9, f8, f6, f1

(b) In each of the following, indicate whether f = O(g), f = Ω(g), or both (in which case f = Θ(g)).
Briefly justify each of your answers. Recall that in terms of asymptotic growth rate, constant
< logarithmic < polynomial < exponential.

f(n) g(n)
(i) log3 n log4(n)
(ii) n log(n4) n2 log(n3)
(iii)

√
n (log n)3

(iv) n+ log n n+ (log n)2

Solution:

(i) f = Θ(g); using the log change of base formula, logn
log 3 and logn

log 4 differ only by a constant
factor.

(ii) f = O(g); f(n) = 4n log(n) and g(n) = 3n2 log(n), and the polynomial in g has the higher
degree.

(iii) f = Ω(g); any polynomial dominates a product of logs. We can also obtain this result via

3

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

the limit proof below:

lim
n→∞

f(n)

g(n)
= lim

n→∞

√
n

(log n)3

= lim
n→∞

1
2
√
n

3(log n)2 · 1
n

[L’Hôpital’s rule]

= lim
n→∞

√
n

6(log n)2

= lim
n→∞

√
n

24 log n
[L’Hôpital’s rule again]

= lim
n→∞

√
n

48
[L’Hôpital’s rule one more time]

= ∞

(iv) f = Θ(g); Both f and g grow as Θ(n) because the linear term dominates the other. We
can also obtain this result via the limit proof below:

lim
n→∞

f(n)

g(n)
= lim

n→∞

n+ log n

n+ (log n)2

= lim
n→∞

1 + 1
n

1 + 2 logn
n

[L’Hôpital’s rule]

= 1

4

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

3 Recurrence Relations

Master Theorem: If the recurrence relation is of the form T (n) = aT
(
n
b

)
+ O(nd) for some

constants a > 0, b > 1, and d ≥ 0, then

T (n) =


O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

Remember that if the recurrence relation is not in the form T (n) = aT
(
n
b

)
+ O(nd), you can’t

use Master Theorem! If this is the case, you can try the following strategies:

1. “Unraveling” the recurrence relation.

We try to recursively keep on plugging in the smaller subproblems (e.g. T (n/2) or T (n−1))
to T (n) to find a pattern or simply directly compute the entire expression.

2. Draw a tree!

We use a tree representation to count the total number of calls on each subproblem, doing
so by summing up the work per level.

3. Change of Variables

We can make a change of variables (kind of like u-substitution for integration) to mold our
recurrence into a nicer form to work with.

4. Squeeze

For certain recurrence relations where we can’t directly compute the solution, we can in-
directly solve it by computing upper and lower bounds for the runtime based on known
recurrence relations. In particular, if the upper and lower bounds have the same asymptotic
growth, then we have our answer!

5. Squeeze + Guess & Check

If we try using the previous method and can’t end up with asymptotically equivalent up-
per/lower bounds, then we resort to guess-and-checking reasonable runtimes between the
bounds to arrive at the solution (look up “The Substitution Method for Solving Recurrences
– Brilliant” to see how to do this). For the purposes of this class, if you ever have to resort
to using this method, the expression for T (n) will always look “nice.”

There are a lot more strategies that are out-of-scope for this class, and if you’re curious we highly
recommend you to read about them in the following link: http://beta.iiitdm.ac.in/Faculty_
Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf.

Solve the following recurrence relations, assuming base cases T (0) = T (1) = 1:

(a) T (n) = 2 · T (n/2) +O(n)

Solution: We can use the Master Theorem here! Noting that a = 2, b = 2, and d = 1, we have
that logb a = log2(2) = 1 = d. Thus, via the Master Theorem, we have

T (n) = O(nd log n) = O(n log n)

5

https://brilliant.org/wiki/the-substitution-method-for-solving-recurrences/
http://beta.iiitdm.ac.in/Faculty_Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf
http://beta.iiitdm.ac.in/Faculty_Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

(b) T (n) = T (n− 1) + n

Solution: Since we can’t use Master Theorem here, we use the “unravelling” strategy as follows:

T (n) = T (n− 1) + n

= (T (n− 2) + (n− 1)) + n

= ((T (n− 3) + (n− 2)) + (n− 1)) + n

= · · ·Unravelling · · ·
= T (1) + 2 + 3 + · · · (n− 2) + (n− 1) + n

= 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n

=

n∑
i=1

i

=
n(n+ 1)

2

= O(n2)

(c) T (n) = 3 · T (n− 2) + 5

Solution: More unravelling! Here we go again:

T (n) = 3T (n− 2) + 5

= 32T (n− 4) + 5 · 3 + 5

= 33T (n− 6) + 5 · 32 + 5 · 3 + 5

= 34T (n− 8) + 5 · 33 + 5 · 32 + 5 · 3 + 5

= · · ·
= 3⌊n/2⌋T (n mod 2) + 5 · 3⌊n/2⌋−1 + 5 · 3⌊n/2⌋−2 + · · ·+ 5 · 32 + 5 · 3 + 5

= 1 · 3⌊n/2⌋ + 5 · 3⌊n/2⌋−1 + 5 · 3⌊n/2⌋−2 + · · ·+ 5 · 32 + 5 · 3 + 5

= 3⌊n/2⌋ +
5 · (3⌊n/2⌋ − 1)

3− 1

=
7

2
· 3⌊n/2⌋ − 5

2

= O(3n/2)

6

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

(d) T (n) = 2 · T (n/2) +O(n log n)

Solution: We use the tree drawing technique here. We draw the following recursion tree, where
the nodes represent the work done by a recursive call:

O(n log n)

O
(
n
2 log n

2

)
O
(
n
2 log n

2

)

O
(
n
4 log n

4

)
O
(
n
4 log n

4

)
O
(
n
4 log n

4

)
O
(
n
4 log n

4

)
...

...
...

...
...

...
...

...

Summing up all the levels, we get

T (n) = O(n log n) +O
(
n log

(n
2

))
+O

(
n log

(n
4

))
+ · · ·+O(1)

= O

⌊logn⌋∑
i=0

n log
(n

2i

)
= O

⌊logn⌋∑
i=0

n (log n− i)


= O

n

log2 n−
⌊logn⌋∑
i=0

i


= O

(
n

(
log2 n− 1

2
log2 n

))
= O(n log2 n)

(e) T (n) = 3T (n1/3) +O(log n)

7

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

Solution: Since we’re recursing on a weird n1/3 cubic root, we should use a change of variables
to get mold the recurrence into something that’s more manageable. Let’s try the substitution
x = log n, so that

n1/3 = (ex)1/3 = ex/3.

Then, our recurrence becomes T (ex) = 3T (ex/3) + O(x). Now, let us define S(x) = T (ex) =
T (n), which has the following (nice) recurrence:

S(x) = 3S(x/3) +O(x).

Look at this; we can apply the Master Theorem! Solving, we get S(x) = O(x log x). Finally,
note that we want to find T (n) and not S(x), so we plug x = log n back in as follows:

T (n) = S(x) = O(x log x) = O(log n · log log n).

(f) T (n) = T (n− 1) + T (n− 2)

Solution: We apply the squeeze + guess & check method. First, we can lower bound it by,
T (n) ≥ 2T (n−2), so we know T (n) = Ω(2n/2). We can also upper-bound it by T (n) ≤ 2T (n−1),
which gives T (n) = O(2n).

Hence, T (n) = 2Θ(n). However, we can actually compute a more precise runtime! Since we
know the runtime is exponential with respect to n, we can write the runtime in the form
T (n) = Θ(an). Then, plugging this into the recurrence, we have

an = an−1 + an−2

a2 = a+ 1

a2 − a− 1 = 0

where we can divide by an−2 since a ̸= 0. By the quadratic formula, we get that a = 1±
√
5

2 .

Since a must be positive, we conclude that a = 1+
√
5

2 and thus

T (n) = Θ

((
1 +

√
5

2

)n)

8

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

4 Complex Numbers Review

A complex number is a number that can be written in the rectangular form a+ bi (i is the imaginary
unit, with i2 = −1). The following famous equation (Euler’s formula) relates the polar form of
complex numbers to the rectangular form:

reiθ = r(cos θ + i sin θ)

where a = r cos θ and b = r sin θ. In polar form, r ≥ 0 represents the distance of the complex number
from 0, and θ represents its angle. Note that since sin(θ) = sin(θ+2π), cos(θ) = cos(θ+2π), we have
reiθ = rei(θ+2π) for any r, θ.

The n-th roots of unity are the n solutions to the equation ωn = 1. They are given by

ωk = e2πik/n, k = 0, 1, 2, . . . , n− 1

(a) Let x = e2πi3/10, y = e2πi5/10 which are two 10-th roots of unity. Compute the product z = x ·y.
Is this an n-th root of unity for some n? Is it a 10-th root of unity?

What happens if x = e2πi6/10, y = e2πi7/10?

For all your answers, simplify if possible.

Solution: z = x · y = e2πi8/10. This is always an 10-th root of unity (it is in general). But
because 8/10 = 4/5, this is also a 5th root of unity.

If x = e2πi6/10, y = e2πi7/10, then we ‘wind around‘ and the product becomes z = e2πi13/10 =
e2πi3/10.

(b) Show that for any n-th root of unity ω ̸= 1,
∑n−1

k=0 ω
k = 0, when n > 1.

Hint: Use the formula for the sum of a geometric series
∑n

k=0 α
k = αn+1−1

α−1 . It works for
complex numbers too!

Solution: Remember that ωn = 1. So∑n−1
k=0 ω

k = ωn−1
ω−1 = 1−1

ω−1 = 0

(c) (i) Find all ω such that ω2 = −1.

9

CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

Solution: ω = i,−i

There are many ways to arrive at the solution, here’s one: Squaring both sides, we get ω4 =
1. So we only need to consider the 4th roots of unity, e2πi·0/4, e2πi·1/4, e2πi·2/4, e2πi·3/4, or
equivalently 1, i,−1,−i. Geometrically, we get these by going 0, 1, 2, 3 quarters of the way
around the complex unit circle. Of these four values, the ones that square to −1 are i,−i.

(ii) Find all ω such that ω4 = −1.

Solution: ω = e2πi·1/8, e2πi·3/8, e2πi·5/8, e2πi·7/8

Similarly to the previous part, squaring both sides we get ω8 = 1, so we only need to
consider the 8th roots of unity. However, ω4 ̸= 1, so ω is not a 4th root of unity. The 8th
roots of unity that are not 4th roots of unity are e2πi·1/8, e2πi·3/8, e2πi·5/8, e2πi·7/8, and we
can check that these all are solutions to ω4 = −1.

10

	Asymptotics and Limits
	Asymptotic Complexity Comparisons
	Recurrence Relations
	Complex Numbers Review

