
CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

In this class, we care a lot about the runtime of algorithms. However, we don’t care too much about
concrete performance on small input sizes (most algorithms do well on small inputs). Instead we want
to compare the asymptotic (i.e. long-term) growth of the runtimes.

Asymptotic Notation: The following are definitions for O(·),Θ(·), and Ω(·):

• f(n) = O(g(n)) if there exists a c > 0 where after large enough n, f(n) ≤ c · g(n).
(Asymptotically, f grows at most as much as g)

• f(n) = Ω(g(n)) if g(n) = O(f(n)). (Asymptotically, f grows at least as much as g)

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)). (Asymptotically, f and g grow at
the same rate)

If we compare these definitions to the order on the numbers, O is a lot like ≤, Ω is a lot like ≥, and
Θ is a lot like = (except all are with regard to asymptotic behavior).

1 Asymptotics and Limits

If we would like to prove asymptotic relations instead of just using them, we can use limits.

Asymptotic Limit Rules: If f(n), g(n) ≥ 0:

• If lim
n→∞

f(n)
g(n) < ∞, then f(n) = O(g(n)).

• If lim
n→∞

f(n)
g(n) = c, for some c > 0, then f(n) = Θ(g(n)).

• If lim
n→∞

f(n)
g(n) > 0, then f(n) = Ω(g(n)).

Note that these are all sufficient (and not necessary) conditions involving limits, and are not true
definitions of O, Θ, and Ω. We highly recommend checking on your own that these statements are
correct!)

(a) Prove that n3 = O(n4).

(b) Find an f(n), g(n) ≥ 0 such that f(n) = O(g(n)), yet lim
n→∞

f(n)
g(n) ̸= 0.

1



CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

(c) Prove that for any c > 0, we have log n = O(nc).

Hint: Use L’Hôpital’s rule: If lim
n→∞

f(n) = lim
n→∞

g(n) = ∞, then lim
n→∞

f(n)
g(n) = lim

n→∞
f ′(n)
g′(n) (if the

RHS exists)

(d) Find an f(n), g(n) ≥ 0 such that f(n) = O(g(n)), yet lim
n→∞

f(n)
g(n) does not exist. In this case,

you would be unable to use limits to prove f(n) = O(g(n)).

Hint: think about oscillating functions!

2



CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

2 Asymptotic Complexity Comparisons

(a) Order the following functions so that for all i, j, if fi comes before fj in the order then fi = O(fj).
Do not justify your answers.

• f1(n) = 3n

• f2(n) = n
1
3

• f3(n) = 12

• f4(n) = 2log2 n

• f5(n) =
√
n

• f6(n) = 2n

• f7(n) = log2 n

• f8(n) = 2
√
n

• f9(n) = n3

As an answer you may just write the functions as a list, e.g. f8, f9, f1, . . .

(b) In each of the following, indicate whether f = O(g), f = Ω(g), or both (in which case f = Θ(g)).
Briefly justify each of your answers. Recall that in terms of asymptotic growth rate, constant
< logarithmic < polynomial < exponential.

f(n) g(n)
(i) log3 n log4(n)
(ii) n log(n4) n2 log(n3)
(iii)

√
n (log n)3

(iv) n+ log n n+ (log n)2

3



CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

3 Recurrence Relations

Master Theorem: If the recurrence relation is of the form T (n) = aT
(
n
b

)
+ O(nd) for some

constants a > 0, b > 1, and d ≥ 0, then

T (n) =


O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

Remember that if the recurrence relation is not in the form T (n) = aT
(
n
b

)
+ O(nd), you can’t

use Master Theorem! If this is the case, you can try the following strategies:

1. “Unraveling” the recurrence relation.

We try to recursively keep on plugging in the smaller subproblems (e.g. T (n/2) or T (n−1))
to T (n) to find a pattern or simply directly compute the entire expression.

2. Draw a tree!

We use a tree representation to count the total number of calls on each subproblem, doing
so by summing up the work per level.

3. Change of Variables

We can make a change of variables (kind of like u-substitution for integration) to mold our
recurrence into a nicer form to work with.

4. Squeeze

For certain recurrence relations where we can’t directly compute the solution, we can in-
directly solve it by computing upper and lower bounds for the runtime based on known
recurrence relations. In particular, if the upper and lower bounds have the same asymptotic
growth, then we have our answer!

5. Squeeze + Guess & Check

If we try using the previous method and can’t end up with asymptotically equivalent up-
per/lower bounds, then we resort to guess-and-checking reasonable runtimes between the
bounds to arrive at the solution (look up “The Substitution Method for Solving Recurrences
– Brilliant” to see how to do this). For the purposes of this class, if you ever have to resort
to using this method, the expression for T (n) will always look “nice.”

There are a lot more strategies that are out-of-scope for this class, and if you’re curious we highly
recommend you to read about them in the following link: http://beta.iiitdm.ac.in/Faculty_
Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf.

Solve the following recurrence relations, assuming base cases T (0) = T (1) = 1:

(a) T (n) = 2 · T (n/2) +O(n)

4

https://brilliant.org/wiki/the-substitution-method-for-solving-recurrences/
http://beta.iiitdm.ac.in/Faculty_Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf
http://beta.iiitdm.ac.in/Faculty_Teaching/Sadagopan/pdf/DAA/new/recurrence-relations-V3.pdf


CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

(b) T (n) = T (n− 1) + n

(c) T (n) = 3 · T (n− 2) + 5

(d) T (n) = 2 · T (n/2) +O(n log n)

(e) T (n) = 3T (n1/3) +O(log n)

(f) T (n) = T (n− 1) + T (n− 2)

5



CS 170, Spring 2024 Discussion 1 P. Raghavendra and C. Borgs

4 Complex Numbers Review

A complex number is a number that can be written in the rectangular form a+ bi (i is the imaginary
unit, with i2 = −1). The following famous equation (Euler’s formula) relates the polar form of
complex numbers to the rectangular form:

reiθ = r(cos θ + i sin θ)

where a = r cos θ and b = r sin θ. In polar form, r ≥ 0 represents the distance of the complex number
from 0, and θ represents its angle. Note that since sin(θ) = sin(θ+2π), cos(θ) = cos(θ+2π), we have
reiθ = rei(θ+2π) for any r, θ.

The n-th roots of unity are the n solutions to the equation ωn = 1. They are given by

ωk = e2πik/n, k = 0, 1, 2, . . . , n− 1

(a) Let x = e2πi3/10, y = e2πi5/10 which are two 10-th roots of unity. Compute the product z = x ·y.
Is this an n-th root of unity for some n? Is it a 10-th root of unity?

What happens if x = e2πi6/10, y = e2πi7/10?

For all your answers, simplify if possible.

(b) Show that for any n-th root of unity ω ̸= 1,
∑n−1

k=0 ω
k = 0, when n > 1.

Hint: Use the formula for the sum of a geometric series
∑n

k=0 α
k = αn+1−1

α−1 . It works for
complex numbers too!

(c) (i) Find all ω such that ω2 = −1.

(ii) Find all ω such that ω4 = −1.

6


	Asymptotics and Limits
	Asymptotic Complexity Comparisons
	Recurrence Relations
	Complex Numbers Review

