
Today.

...Complex numbers, polynomials today. FFT.



Multiplying polynomials.

(1+2x +3x2)(4+3x +2x2)

Coefficient of x4 in result?

(A) 6

(B) 5

(A) 6 of course!

Coeefficient of x2 in result?

Uh oh...
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Multiplying polynomials.
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x0 ((1)(4)) = 4
x1 ((1)(3)+(2)(4)) = 11
x2 ((1)(2)+(2)(3)+(3)(4))) = 20
x3 ((2)(2)+(3)(3)) = 13
x4 ((3)(2)) = 6

4+11x +20x2 +13x3 +6x4

Given:
a0 +a1x + · · ·ad xd In example: a0 = 1,a1 = 2,a2 = 3
b0 +b1x + · · ·bd xd In example: b0 = 4,b1 = 3,b2 = 2
Product: c0 +c1x + · · ·c2d x2d

ck = ∑
0≤i≤k

ai ∗bk−i .

E.g.: c2 = a2b0 +a1b1 +a0b2.
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Runtime?

(A) O(d)

(B) O(d logd)

(C) O(n2)

(D) O(d2)

Time: O(k) multiplications for each k up to k = 2d .
=⇒ O(d2).

or (D) ..will use n as parameter shortly. so (C) also.
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(C) O(n2)

(D) O(d2)

Time: O(k) multiplications for each k up to k = 2d .

=⇒ O(d2).
or (D) ..will use n as parameter shortly. so (C) also.
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Hmmm...

O(d2) time!

Quadratic Time!
Can we do better?
Yes? No?
How?
Use different representation.
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Another representation.

Represent a line?

Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept!

a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line?

2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)?

3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?

plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...

and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?

Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?

Solve d +1 variable system of equations!



Another representation.

Represent a line?
Slope and intercept! a0,a1

How many points determine a line? 2
Represent line as two points on line instead of coefficients!

How many points determine a parabola ( a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d +1

How to find points on function?
plug in x-values...and evaluate.

How to find “line” from points?
Solve two variable system of equations!

How to find polynomial from points?
Solve d +1 variable system of equations!



Point-value representation.

A(x0), · · · ,A(x2d )
B(x0), · · · ,B(x2d )

Product: C(x0), · · · ,C(x2d )

C(xi) = A(xi)B(xi)

O(d) multiplications!

Given: a0, . . . ,ad and b0, . . . ,bd .
Evaluate: A(x),B(x) on 2d +1 points: x0, · · · ,x2d .
Recall(from CS70): unique representation of polynomial.

Multiply: A(x)B(x) on points to get points for C(x).

Interpolate: find c0 +c1x +c2x2 + · · ·c2d x2d .
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Interpolation
Points: (x0,y0), . . .(xd ,yd ).

Lagrange:

∆i(x) = Πi ̸=j
x−xj
xi−xj

P(x) = ∑i yi∆i(x).

Correctness: ∆i(xj) = 0 for xi ̸= xj and ∆i(xi) = 1. Thus, P(xi) = yi .

Linear system:

c0 +c1x0 +c2x2
0 · · ·cd xd

0 = y0.
c0 +c1x1 +c2x2

1 · · ·cd xd
1 = y1.

...
c0 +c1xd +c2x2

d · · ·cd xd
d = yd .

Has solution? Lagrange.
Unique?

At most d roots in any degree d polynomial.
Not unique =⇒ P(x) and Q(x) where P(xi) = Q(xi).

P(x)−Q(x) has d +1 roots. Contradicts not unique.
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What is it good for?

What is the point-value representation good for (from CS70)?

Error tolerance.

Any d points suffices.

“Encode” polynomial with d +k point values.
Can lose any k points and reconstruct.

The original “message/file/polynomial” is recoverable.
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Polynomial Evaluation.

Evaluate A(x) = a0 +a1x + · · ·an−1xn−1 on n points: x0, · · · ,xn−1.

On one point at at a time:

Example: 4+3x +5x2 +4x3 on 2.

Horners Rule: 4+x(3+x(5+4x))

5+4x = 13, then 3+2(13) = 29, then 4+2(29) = 62.

In general: a0 +x(a1 +x(a2 +x(...))).

n multiplications/additions to evaluate one point.

Evaluate on n points . We get O(n2) time.

Could have just multiplied polynomials!
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Evaluation of polynomials: Recursive.

A(x) = Ae(x2)+x(Ao(x2))

where

Even coefficient polynomial.
Ae(x) = a0 +a2x +a4x2....

Odd coefficient polynomial.
Ao(x) = a1 +a3x +a5x2....

Example:

A(x) = 4+12x +20x2 +13x3 +6x4 +7x5

= (4+20x2 +6x4)+(12x +13x3 +7x5)
= (4+20x2 +6x4)+x(12+13x2 +7x4)

Ae(x) = 4+20x +6x2

Ao(x) = 12+13x +7x2

A(x) = Ae(x2)+xAo(x2)

Plug in x2 into Ae and Ao use results to find A(x).
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For a point x :
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T (n) = 2T (n/2)+1 = O(n).
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n points – O(n2) time to evaluate on n points.

No better than polynomial multiplication! Bummer.
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Recursive on more than one point.
A(x) = Ae(x2)+x(Ao(x2))
Reuse computations.

n points: ±x0,±x1, . . . ,±x(n−1)/2.
Also n = d +1: number of coefficients.

Two points: +x0 and −x0 One square: (+x0)
2 = (−x0)

2 = x2
0 .

A(x0) = Ae(x2
0 )+x0Ao(x2

0 )

A(−x0) = Ae((−x0)
2)+(−x0)Ao((−x0)

2)
A(−x0) = Ae(x2

0 )−x0Ao(x2
0 )

From Ae(x2
o ) and Ao(x2

0 ) compute both A(−x0) and A(x0)?

From Ae(x2
i ) and Ao(x2

i ) compute both A(−xi) and A(xi)?

Evaluate n coefficient polynomial on n points by

Evaluating 2 n
2 coefficient polynomials on n

2 points.

T (n,n) = 2T (n
2 ,

n
2 )+O(n) = O(n logn) !!!!

From O(n2) to O(n logn) !!!
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Explore recursion.

Recursive Condition:

n points: n
2 pairs of distinct numbers with common squares.

E.g., ±x0 both have x2
0 as square,

±x1 both have x2
1 as square.

. . . ..

Next step:
n
2 points: squares should only be n/4 distinct numbers

But all our n
2 points are squares ...and positive!

Need the n
2 points to come in Positive/Negatives pairs!

How can squares be negative?

Complex numbers!
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Pairs with common squares.
Want n numbers:

x0, . . . ,xn−1 where
|{x2

0 , . . . ,x
2
n−1}| =

n
2 ,

and
|{x4

0 , . . . ,x
4
n−1}| =

n
4 ,

...and ...
{x logn

0 , . . . ,x logn
n−1 }| = 1.

Each recursive level evaluates:
polynomials of half the degree on half as many points.
n represents both degree and number of points.

In reverse: start with a number 1
Take square roots: 1, −1.
Take square roots: 1,−1, i , −i .
Uh oh.

Actually: ±1, ±i , ± 1√
2
(1+ i), ± 1√

2
(−1+ i),

Complex numbers!

Uh oh? Can we get a pattern?
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Multiplying Complex Numbers
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(r1r2,θ1 +θ2)

−1 = (1,π) = eπ i

−1× (r1,θ1) = (r1,θ1 +π)

= r1er1(θ1+π)i(r1,θ1 +π)
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The nth complex roots of unity.

(e
2iπ
n +π)2 = (e

2iπ
n )2e2π = (e

2iπ
n )2

Solutions to zn = 1

(1, 2π

n )n = (1, 2π

n ×n) = (1,2π) = 1!

2π

n

(1, 4π

n )n = (1, 4π

n ×n) = (1,4π) = 1!(1, 2kπ

n )n = (1, 2kπ

n ×n) = (1,2kπ) = 1!

(1,θ +π)2 = (1,2θ +2π) = (1,2θ) = (1,θ)2.

Pair w/common square!

2π

n +π

Squares: n
2 th roots.
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Quiz

Which are the same as 1?

(A) (1)2

(B) (−1)2
(C) −1
(D) e2π i

(E) (eπ i )2

Which are the same as −1?
(A) (−1)2

(B) (e3π i/2)2

(C) (eπ i/2)2

(D) (eπ i )2

Note: eπ i =−1. (B) (e3π i/2)2 = e3π i = eπ i (D) (eπ i/2)2 = eπ i .

Which are 4th roots of unity? (Hint: take the 4th power.)
(A) eπ i/2

(B) eπ i

(C) eπ i/3

(D) e3π i/2

(A), (B) and (D).
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The FFT!

Defn: ω = (1, 2π

n ) = e
2π i
n , nth root of unity.

Pairs: ω i and ω
i+ n

2 = ω iω
n
2 =−ω i . Common square!

Common Squares: are n
2 root of unity.

Fast Fourier Transform:
Evaluate A(x) = a0 +a1x +a2x2 + · · ·an−1xn−1

on points ω0,ω,ω2, . . . ,ωn−1.

Procedure:
Recursively compute Ae and Ao on n

2 roots of unity:
ω2,ω4,ω6, . . . ,ωn.

For each j ≤ n
2 .

A(ω j) = Ae(ω
2i)+ω jAo(ω

2j)

A(ω j+ n
2 ) = Ae(ω

2j)−ω jAo(ω
2i)

Runtime Recurrence:
Ae and Ao are degree n

2 , n
2 points in recursion.

T (n) = 2T (n
2 )+O(n) = O(n logn)!
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Quiz 2: review
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a+n/2
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Consider n points: Sn = {ωn,(ωn)
2, . . . ,ωn

n}.

How many points in the set: {(ωn)
2,(ωn)

4, . . . ,ω2n
n }?

n/2 points!!!

FFT: Evaluate degree n polynomial on n points
by evaluating two degree n/2 polynomials on n/2 points!
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Summary.
Polynomial Multiplication: O(n2).

In Point form: O(n).

Polynomial Evaluation: O(n2).

Polynomial: A(x) = Ae(x2)+xAo(x2)
Evaluate on n points recursively.
T (n,n) = 2T (n/2,n)+O(n) = O(n2).
The number of leaves is n.
and the work on each leaf is O(n).

Consider n points: Sn = {ωn,(ωn)
2, . . . ,ωn

n}.

Set of squares: Sn/2 = {ω2
n ),ωn)

4, . . . ,(ωn)
n,(ωn)

n+2, ...(ωn)
2n}.

Set of squares: Sn/2 = {ω2
n ),ωn)

4, . . . ,(ωn)
n}.

Only n/2 values here.

Evaluate A(x) = Ae(x2)+xAo(x2).
Only need to evaluate Ae and Ao on n/2 points.

T (n,n) = 2T (n/2,n/2)+O(n).
Or T (n) = 2(n/2)+O(n) = O(n logn)
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