
CS 170, Spring 2024 Discussion 2 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Counting inversions

This problem arises in the analysis of rankings. Consider comparing two rankings. One way is to
label the elements (books, movies, etc.) from 1 to k according to one of the rankings, then order these
labels according to the other ranking, and see how many pairs are “out of order”.

We are given a sequence of k distinct numbers n1, · · · , nk. We say that two indices i < j form an
inversion if ni > nj , that is if the two elements ni and nj are “out of order”. Provide a divide and
conquer algorithm to determine the number of inversions in the sequence n1, · · · , nk in time O(k log k).
Only an algorithm description and runtime analysis is needed.

Hint: Modify merge sort to count during merging.
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2 Pareto Optimality

Given a set of points P = {(x1, y1), (x2, y2) . . . (xn, yn)}, a point (xi, yi) ∈ P is Pareto-optimal if there
does not exist any j ̸= i such that such that xj > xi and yj > yi. In other words, there is no point
in P above and to the right of (xi, yi). Design a O(n log n)-time divide-and-conquer algorithm that
given P , outputs all Pareto-optimal points in P . Only an algorithm description and runtime analysis
is needed.

Hint: Split the array by x-coordinate. Show that all points returned by one of the two recursive calls
is Pareto-optimal, and that you can get rid of all non-Pareto-optimal points in the other recursive call
in linear time.
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3 Monotone matrices

A m-by-n matrix A is monotone if n ≥ m, each row of A has no duplicate entries, and it has the
following property: if the minimum of row i is located at column ji, then j1 < j2 < j3 . . . jm. For
example, the following matrix is monotone (the minimum of each row is bolded):

1 3 4 6 5 2
7 3 2 5 6 4
7 9 6 3 10 0


Give an efficient (i.e., better than O(mn)-time) algorithm that finds the minimum in each row of an
m-by-n monotone matrix A.

Give a 3-part solution. You do not need to write a formal recurrence relation in your runtime
analysis; an informal summary of the runtime analysis such as “proof by picture” is fine.
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4 FFT Intro

We will use ωn to denote the first n-th root of unity ωn = e2πi/n. The most important fact about
roots of unity for our purposes is that the squares of the 2n-th roots of unity are the n-th roots of
unity.

Fast Fourier Transform! The Fast Fourier Transform FFT(p, n) takes arguments n (an integer
power of 2), and p (some vector [p0, p1, . . . , pn−1]).

Here, we describe how we can view FFT as a way to perform a specific matrix multiplication
involving the DFT matrix. Note, however, that the FFT algorithm will not explicitly compute
this matrix. We have written out the matrix below for convenience.

Treating p as a polynomial P (x) = p0+p1x+ . . .+pn−1x
n−1, the FFT computes the value of P (x)

for all x that are n-th roots of unity by computing the result of the following matrix multiplication
in O(n log n) time:


P (1)
P (ωn)
P (ω2

n)
...

P (ωn−1
n )

 =


1 1 1 . . . 1

1 ω1
n ω2

n . . . ω
(n−1)
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
. . .

...

1 ω
(n−1)
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n

 ·


p0
p1
p2
...

pn−1


If we let E(x) = p0 + p2x + . . . pn−2x

n/2−1 and O(x) = p1 + p3x + . . . pn−1x
n/2−1, then P (x) =

E(x2) + xO(x2), and then FFT (p, n) can be expressed as a divide-and-conquer algorithm:

1. Compute E′ = FFT(E,n/2) and O′ = FFT(O,n/2).

2. For i = 0 . . . n− 1, assign P (ωi
n)← E((ωi

n)
2) + ωi

nO((ωi
n)

2)

Also observe that:

1

n


1 1 1 . . . 1

1 ω−1
n ω−2

n . . . ω
−(n−1)
n

1 ω−2
n ω−4

n . . . ω
−2(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n . . . ω

−(n−1)(n−1)
n

 =


1 1 1 . . . 1

1 ω1
n ω2

n . . . ω
(n−1)
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
. . .

...

1 ω
(n−1)
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n



−1

(You should verify this on your own!) And so given the values P (1), P (ωn), P (ω2
n) . . ., we can

compute P by finding the result of the following matrix multiplication in O(n log n) time:


p0
p1
p2
...

pn−1

 =
1

n


1 1 1 . . . 1

1 ω−1
n ω−2

n . . . ω
−(n−1)
n

1 ω−2
n ω−4

n . . . ω
−2(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n . . . ω

−(n−1)(n−1)
n

 ·


P (1)
P (ωn)
P (ω2

n)
...

P (ωn−1
n )


This can be done in O(n log n) time using a similar divide and conquer algorithm.
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(a) Let p = [p0]. What is FFT(p, 1)?

(b) Use the FFT algorithm to compute FFT([1, 4], 2) and FFT([3, 2], 2).

(c) Use your answers to the previous parts to compute FFT([1, 3, 4, 2], 4).

(d) Describe how to multiply two polynomials P (x), Q(x) in coefficient form of degree at most d.

5



CS 170, Spring 2024 Discussion 2 P. Raghavendra and C. Borgs

(e) Use the algorithm from the previous part to multiply the two polynomials P (x) = 1 + 2x and
Q(x) = 3− x in coefficient form.
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