
CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Triple sum

We are given an array A[0 . . . n − 1] with n elements, where each element of A is an integer in the
range 0 ≤ A[i] ≤ n (the elements are not necessarily distinct). We would like to know if there exist
indices 0 ≤ i, j, k ≤ n− 1 (not necessarily distinct) such that

A[i] +A[j] +A[k] = n

1. First, consider 2SUM, a simplified version of triple sum where you determine if there exist
indices 0 ≤ i, j ≤ n− 1 (not necessarily distinct) such that

A[i] +A[j] = n

Consider the array [1, 3, 5] and n = 5. What are all the possible 2SUMs?

2. Now try encoding the above array into a polynomial to solve 2SUM with one polynomial mul-
tiplication. Then, how would you encode an arbitrary array to solve 2SUM?

Hint: given p(x) = x1+x3+x5, compute p(x)2. What are the resulting coefficients and exponents
in the product? Can they be used to solve 2SUM?

3. Now, design an O(n log n) time algorithm for triple sum. Note that you do not need to actually
return the indices; just yes or no is enough.

Food for thought: is it possible to return the number of ways you can add 3 elements from A to
equal n?

Solution:

1. (a) 1 + 1 = 2

(b) 1 + 3 = 4

1



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

(c) 1 + 5 = 6

(d) 3 + 3 = 6

(e) 3 + 5 = 8

(f) 5 + 5 = 10

2. p(x)2 = x2 + 2x4 + 3x6 + 2x8 + x10. In this example, we see that by encoding the array
as the exponents of the polynomial, and the square of the polynomial contains terms whose
exponents match the two sums. In general, to solve 2 sum, we can encode an array A as
p(x) = xA[0] + xA[1] + · · ·+ xA[n−1]. Then, we use FFT to compute p(x)2 in O(n log n). Then
we check if the term xn has a non-zero coefficient. If it does, then this 2SUM exists, otherwise
it doesn’t. See part (c) for the full proof and runtime analysis.

3. Main idea. Exponentiation converts multiplication to addition.

For example, observe x3 · x2 = x2+3 = x5. This gives us the idea to represent the lists as
polynomials, with the elements in the lists in the exponents (This is a very common trick that
you should remember!). For example, we can represent the array [1, 3] as x1+x3. If we multiply
this with the polynomial for [2, 4], x2 + x4, we get the polynomial x3 + 2x5 + x7. Notice that
3, 5, 7 correspond to the possible sums of an element in [1, 3] and an element in [2, 4].

In general, we define
p(x) = xA[0] + xA[1] + · · ·+ xA[n−1].

Notice that p(x)3 contains a sum of terms, where each term has the form xA[i] · xA[j] · xA[k] =
xA[i]+A[j]+A[k]. Therefore, we just need to check whether p(x)3 contains xn as a term.

Proof of Correctness. Observe that

q(x) = p(x)3 =

 ∑
0≤i<n

xA[i]

3

=

 ∑
0≤i<n

xA[i]

 ·

 ∑
0≤j<n

xA[j]

 ·

 ∑
0≤k<n

xA[k]



=
∑

0≤i,j,k<n

xA[i]xA[j]xA[k] =
∑

0≤i,j,k<n

xA[i]+A[j]+A[k].

Therefore, the coefficient of xn in q is nonzero if and only if there exist indices i, j, k such that
A[i] +A[j] +A[k] = n. So the algorithm is correct. (In fact, it does more: the coefficient of xn

tells us how many such triples (i, j, k) there are.)

Runtime Analysis. Constructing p(x) clearly takes O(n) time. p(x) is a polynomial of degree
at most n = O(n). Therefore doing the two multiplications to compute q(x) takes O(n log n)
time with the FFT. Finally, looking up the coefficient of xt takes constant time, so overall the
algorithm takes O(n log n) time.

Comment: This problem promised you that each element of the array is in the range 0 . . . n−
1. What if we didn’t have any such promise? Then the FFT-based method above becomes
inefficient (because the degree of the polynomial is as large as the largest element of A). It
is easy to find a O(n2) time algorithm, but no faster algorithm is known. In particular, it is
a famous open problem (called the 3SUM problem) whether this problem can be solved more
efficiently than O(n2) time. This problem has been studied extensively, because it is closely
connected to a number of problems in computational geometry.

2



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

2 Pattern Matching

Consider the following string matching problem:

Input:

• A string g of length n made of 0s and 1s. Let us call g, the “pattern”.

• A string s of length m made of 0s and 1s. Let us call s the “sequence”.

• Integer k

Goal: Find the (starting) locations of all length n-substrings of s which match g in at least n − k
positions.

Example: Using 0-indexing, if g = 0111, s = 01010110111, and k = 1 your algorithm should output
0, 2, 4, and 7.

(a) Give a O(nm) time algorithm for this problem.

Solution:

For each of i ∈ {0, 1, . . . ,m−n} starting points in s, check if the substring s[i : i+n− 1] differs
from g in at most k positions. The check takes O(n) time at each of O(m) starting points, so
the time complexity is O(mn).

We will now design an O(m logm) time algorithm for the problem using FFT. Pause a moment
here to contemplate how strange this is. What does matching strings have to do with roots of
unity and complex numbers?

(b) First consider g = 0110, s = 0110. We know that g and s match at index 0, since all 4 characters
of g matches the characters in s.

Now, say we have a function (x, y) 7→ f(x, y) that returns len(x) if the strings x and y match
exactly and some number less than len(x) otherwise. How can f(x, y) be used to determine
the indices where g shows up in s?

Solution: f(x, y) can be used to determine the indices where g and s match by calling

f(g, s[i:i+len(g)]) for i in range(0, len(s) - len(g)),

and then returning the indices i for which f(g, s[i:i+len(g)]) == len(g).

3



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

(c) Now, lets try to create f(x, y) using the dot product of x and y. That is, f(x, y) = x · y =∑
i x[i]y[i]. Give a counter example for when the dot product returns the wrong answer. Why

does this happen?

Solution: For the example g = 0110 and s = 0110, the dot product is 2. Since 0 ∗ 0 = 0,
a simple dot product might not return length(x) even if x = y since it doesn’t count all the
matching 0.

(d) However, we can modify this dot product to work by first encoding the bits of of x and y. That
is, we want to find a bit-mapping function Φ : {0, 1} 7→ R such that f(x, y) =

∑
i Φ(x[i])Φ(y[i])

equals to len(x) if x and y match exactly and some number less than len(x) otherwise.
Construct a mapping Φ for which this property holds.

Hint: find Φ such that

Φ(x[i])Φ(y[i]) =

{
1 x[i] = y[i]

−1 x[i] ̸= y[i]

Solution:

Φ(0) = −1

Φ(1) = +1

(e) Now, devise an FFT based algorithm for the problem that runs in time O(m logm) using the
insights of the previous subparts.

Hint: if p(x) = p0 + p1x+ p2x
2 + ...+ pn−1x

n−1 and q(x) = q0 + q1x+ q2x
2 + ...+ qm−1x

m−1,

then the coefficient of the term xb in p(x)q(x) is
∑b

i=0 piqb−i. Can this be used somehow to
compute a dot product?

Solution:
We want to increase the “similarity” of a slice of s with g whenever their corresponding char-
acters match. Taking the dot product of these 2 bitstrings will reflect how many pairs of bits
are both 1. To also capture the case of both bits being 0, we replace each 0 with −1, so when
we multiply two of the same bits, we get a result of 1, while if we multiply two different bits,
we get −1. The sum of this product over all characters represents how many characters of the
slice of s and g match minus the number of characters that don’t.

We’d like to efficiently compute these dot products for all slices of s. Encoding the bits of s and
the reverse of g as coefficients of polynomials will give us 2 polynomials that, when multiplied,
reflect all combinations of slices and starting index for similarity comparisons in its coefficients.

Main Idea: Let g′ be g with 0’s replaced by −1’s. Let

p1(x) = a0 + a1x+ · · ·+ an−1x
n−1

4



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

where ad = g′(n− d− 1) for all d ∈ {0, 1, . . . , n− 1}. Similarly, let

p2(x) = b0 + b1x+ · · ·+ bm−1x
m−1

where bd = s′(d) for all d ∈ {0, 1, . . . ,m− 1}, where again s′ is just s with 0’s replaced by −1’s.
Notice p1(x) is reversed in the sense that the coefficients are in opposite order of the bits in g.

Now consider
p3(x) = p1(x)× p2(x) = c0 + c1x+ · · ·

The coefficient of xn−1+j in p3(x) is

cn−1+j =

n−1∑
i=0

an−1−ibj+i =

n−1∑
i=0

g′(i)s′(j + i)

for any j ∈ {0, 1, . . . ,m− n}, which is exactly the dot product of the substring in s′ starting at
index j and the string g′. If these strings differ in at most k positions, then this dot product
will be at least n− 2k. Thus all we need is to compute p3(x), and output all the j’s between 0
and m− n such that cn−1+j ≥ n− 2k.

Proof of Correctness: Consider the mapping Φ that maps binary digits as follows:

Φ(0) = −1

Φ(1) = +1

Going along with the hint, construct the polynomial

G(x) =
∑
i

Gix
i

from the pattern g[0 : n− 1], by setting G[i] = Φ(g[n− 1− i]).

Similarly, construct the polynomial

S(x) =
∑
i

Six
i

from the pattern s[0 : m− 1] by setting S[i] = Φ(s[i]).

Now consider the product of these two polynomials G(x) and S(x),

G(x) · S(x) =

(
n−1∑
i=0

G[i]xi

)
·

m−1∑
j=0

S[j]xj


=

m+n−2∑
r=0

xr ·

(
r∑

ℓ=0

G[ℓ] · S[r − ℓ]

)

In the last step, we are just writing out the coefficients of polynomial multiplication. Now, let
us look at the coefficients a little bit more carefully. Let us start with coefficient of xn−1, i.e.,
r = n− 1,

Coefficient of xr =

n−1∑
ℓ=0

G[ℓ] · S[r − ℓ]

= G · S[r − n+ 1 : r].

5



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

This is the dot product of Φ(g) and Φ(s[: n]) when r = n − 1. More generally, the coefficient
of xr is the dot product of Φ(g) and Φ(s[: r + 1]). Note that if these strings differ in at most k
positions, then this dot product will be at least n−2k, since each matching character would add
+1 at least n−k times, and each differing character would add −1 at most k times. Thus all we
need is to compute p3(x), and output all the j’s between 0 and m−n such that cn−1+j ≥ n−2k.

Runtime Analysis: The computation takes a FFT, a point-wise product, an inverse FFT, and
a linear scan of the coefficients. The running time of this algorithm, O(m logm), is dominated
by the FFT and inverse FFT steps, which each take O(m logm) time. The point-wise product
and search for c(i) ≥ n− 2k each take O(m) time.

6



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

3 Graph Traversal

A

B C

D

E

FG H

I

J

(a) Recall that given a DFS tree, we can classify edges into one of four types:

• Tree edges are edges in the DFS tree,

• Back edges are edges (u, v) not in the DFS tree where v is the ancestor of u in the DFS
tree

• Forward edges are edges (u, v) not in the DFS tree where u is the ancestor of v in the
DFS tree

• Cross edges are edges (u, v) not in the DFS tree where u is not the ancestor of v, nor is v
the ancestor of u.

For the directed graph above, perform DFS starting from vertex A, breaking ties alphabetically.
As you go, label each node with its pre- and post-number, and mark each edge as Tree, Back,
Forward or Cross.

(b) A strongly connected component (SCC) is defined as a subset of vertices in which there exists
a path from each vertex to another vertex. What are the SCCs of the above graph?

(c) Collapse each SCC you found in part (b) into a meta-node, so that you end up with a graph of
the SCC meta-nodes. Draw this graph below, and describe its structure.

Solution:

7



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

(a)

A6
1

B3
2 C20

7

D11
10

E5
4

F 18
9G15

14 H17
12

I1613

J19
8

T
T

C

C

C

B

T

T

C

T T

T

B

T

(b)
{A}, {B}, {E}, {G,H, I}, {C, J, F,D}

(c)

CJFD GHI A E B

8



CS 170, Spring 2024 Discussion 3 P. Raghavendra and C. Borgs

4 Not So Exciting Scheduling

PNP University requires students to finish all prerequisites for a certain class before taking it; however,
they made some mistakes when assigning prerequisites. Thus, some classes at PNP University are NP
(Not Possible to take) due to it being impossible to take all its prerequisite classes whilst following
the prerequisite rule for them or their prerequisites. Thus, students wish to figure out whether their
classes can all be taken or not. Their n classes are labelled with unique identifiers {c1, c2, . . . , cn},
and the set of m prerequisites in the form [ci, cj ] indicate that ci must be taken before cj .

Design an algorithm that outputs a potential scheduling of classes (i.e. an order to take all the classes
in) if there are no NP classes, return false otherwise.

Solution:

Algorithm: Create a node for each class. For each prerequisite [ci, cj ], construct a directed edge
from cj to ci. Run DFS on the resulting graph while keeping track of pre and post numbers. (Cycle
detection) If a back edge exists, then output false. Otherwise sort the nodes on post numbers, from
highest to lowest (topological sort on DAG) or use a stack to keep track of visited nodes so that you
don’t need to do extra sorting at the end. And this will create a valid scheduling.

Proof of Correctness: Proof for cycle detection and topological sort will be the same as seen in
lecture. A directed graph is a DAG if and only if there is no back edge. And because DAG has no
back edge, if we order the vertices from highest post number to lowest post number, it’s guaranteed
to be topologically sorted by definition.

Runtime Analysis: Constructing the graph will take O(n+m) time since we have n nodes and m
directed edges. Running DFS will take again O(n+m). We can do linear scan to find back edge. If we
used stack to keep track of visited nodes, then topological sort will simply take linear time because we
can just read off the nodes from the back the stack. Therefore, the overall runtime will be O(n+m).

9

https://cs170.org/assets/lec/2.handout.pdf#page=3
https://cs170.org/assets/lec/2.handout.pdf#page=3
https://cs170.org/assets/lec/2.handout.pdf#page=4

	Triple sum
	Pattern Matching
	Graph Traversal
	Not So Exciting Scheduling

