CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

Note: Your TA probably will not cover all the problems. This is totally fine, the discussion worksheets
are not designed to be finished in an hour. They are deliberately made long so they can serve as a
resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings,
and the homework.

1 Waypoint

You are given a strongly connected directed graph G = (V, E) with positive edge weights, and there is
a special node vy € V. Give an efficient algorithm that computes, for all node pairs s, ¢, the length of
the shortest path from s to ¢ that passes through vy. Your algorithm should take O(|V|> +|E|log|V|)
time.

Solution: The length of the shortest path from s to ¢ that passes through v is the same as the length
of the shortest path from s to vy plus the length of the shortest path from vy to ¢.

We compute the shortest path length from vy to all vertices ¢ using Dijkstra’s. Next, we reverse all
edges in G, to get G, and then compute the shortest path length from vy to all vertices in G®. The
shortest path length from vy to s in G¥ is the same as the shortest path length from s to vg in G.

These two calls to Dijkstra’s take O((|V|+|E]) log |V|) time. To find the lengths of the shortest paths
going through vy between all pairs, we iterate over the results of the two calls to Dijkstra’s, and this
takes O(|V|?) time.

2 Dijkstra’s Algorithm Fails on Negative Edges

Draw a graph with five vertices or fewer, and indicate the source from which you would start Dijkstra’s
algorithm.

(a) Draw a graph with no negative cycles for which Dijkstra’s algorithm produces the wrong answer.

(b) Draw a graph with at least two negative weight edges for which Dijkstra’s algorithm produces
the correct answer.

CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

Solution:

1. Here’s one example:

Dijkstra’s algorithm from source A will give the distance to D as 2 rather than 1, because it
visits C' before B.

2. Dijkstra’s algorithm always works on directed paths. For example:

CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

3 Running Errands

You need to run a set of k errands in Berkeley. Berkeley is represented as a directed weighted graph
G, where each vertex v is a location in Berkeley, and there is an edge (u,v) with weight w,, if it takes
Wy, Minutes to go from u to v. The errands must be completed in order, we’ll assume the ith errand
can be completed immediately upon visiting any vertex in the set S; (for example, if you need to buy
snacks, you could do it at any grocery store). Your home in Berkeley is the vertex h.

Given G, h, and all (S;)¥_; as input, give an efficient algorithm that computes the least amount of
time (in minutes) required to complete all the errands starting at h. That is, find the shortest path
in G that starts at h and passes through a vertex in S7, then a vertex in S5, then in Ss, etc.

For instance in the graph below, the shortest such path is h - C — B — C' — E and the time needed
is5H+3+4+4+ 10 =22.

Sl SQ S3
Hint: try creating copies of the graph G to help “keep track of” the errands you’ve completed so far.

Solution:

Main idea: Create k + 1 copies of G, called Gg, G1, ...Gy, to form G’. Let the copy of v in G; be v;.
For every v in S;, we add an edge from v;_; to v; with weight 0. We run Dijkstra’s starting from hg
in G/, and output the shortest path length to any vertex in Gy.

Correctness: Any path in G’ from hg to a vertex Gy can be mapped to a path in G of the same
length passing through vertices, by taking each edge (u;,v;) and replacing it with the edge (u,v) in
G, ignoring edges of the form (v;_1,v;). These paths must also complete the errands in order, since
they must contain edges of the forms (vg,v1), (v1,v2),... in that order.

Runtime analysis: This takes time O(k(|V| 4+ |E|)log k|V|) since the new graph is k times the size
of the original graph.

CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

4 Restaurant Orders

Andrew is the sole chef at CS 170 Diner, and today he is handling a flurry of orders from n customers.
Thankfully, each customer only ordered 1 dish, and he knows that it takes ¢; minutes to cook the
meal for customer 4 (1 < i < n). However, Andrew is very bad at multitasking and can only cook one
meal at a time. To best satisfy the hungry customers, Andrew is trying to figure out the best way to
process all the orders to minimize the total wait time.

More formally, let v; be the time at which customer 7 gets their food. Please help Andrew determine
an efficient algorithm that finds the minimum "', v; over all ways to fulfill the n orders. Please
give a 3-part solution.

Solution:

Algorithm: We continuously choose the shortest remaining meal to cook, until we have fulfilled all
of the meals. Let #; be the length of the ith shortest meal. Then, our answer is > ., (n — i+ 1)t;.

Proof of Correctness: Note that if we cook meal ay first, then as, etc., then all n people have to
wait for meal a1, and then n — 1 people have to wait for as, and so on. Therefore, for this ordering,
the total wait time over everyone is Y " | (n — i+ 1)c,,. Therefore, we want to have the shortest meal
times first: if for i < j we have c,, > ¢, then swapping meals a; and a; in the ordering will give us a
total saving of wait time of (j —7)(ca, — ca;). So, we sort the customers by their meals’ cooking time,
and then serve in that order.

Runtime: It takes O(nlogn) to sort the meals by cooking length, and then O(n) time to take this
summation. So, in total, it takes O(nlogn) time.

5 Longest Huffman Tree

Under a Huffman encoding of n symbols with frequencies f1, fa, ..., fn, what is the longest a codeword
could possibly be? Give an example set of frequencies that would produce this case, and argue that
it is the longest possible.

Solution: The longest codeword can be of length n — 1.

An encoding of n symbols with n — 2 of them having probabilities 1/2,1/4,...,1/2""2 and two of
them having probability 1/2"~1 achieves this value.

No codeword can ever by longer than length n — 1. To see why, we consider a prefix tree of the code.
If a codeword has length n or greater, then the prefix tree would have height n or greater, so it would
have at least n + 1 leaves. Our alphabet is of size n, so the prefix tree has exactly n leaves.

CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

6 Bellman-Ford

Consider the graph below.

(a)

When running the Bellman-Ford algorithm, how many times do we go through all the edges to
determine the single source shortest paths? How can we tell if there is a negative cycle?

Solution: We iterate |V| —1 = 5 times through all the vertices. We can iterate a 6th time; if
distances update, then there is a negative cycle.

Suppose we ran Bellman-Ford on the graph above and we process edges in the following order:
(A4,B),(A,C), (B, E),(D,B),(E,C),(E,D),(E, F),(F.C).

Fill out the table below with the distances of each node from A after each iteration of Bellman-
Ford. Is there a negative cycle in the graph above?

Iteration | A B C D E F
Start 0 © o0 oo o o0
1
2
3
4
5
6

Solution:

We start off with an array where the distance to A is 0 from A, and the distance to every other
node from A is co.

Then, we iterate through the edges in the order provided in the problem, and relax distances
throughout. We arrive at the following distances table:

CS 170, Spring 2024 Discussion 4 P. Raghavendra and C. Borgs

F
00
12
12
10
10
8

8

Iteration | A
Start
1

SESIENESEN)
olo|o|o|o|o|o

ISIETVIENIS RGN B R vy
SIENIICIECIECIENI AN
w|w|o| o~ Q| T
W s o o 00| 00| & |

Since the edges updated at the 6th iteration, there is a negative cycle present in the graph.

	Waypoint
	Dijkstra's Algorithm Fails on Negative Edges
	Running Errands
	Restaurant Orders
	Longest Huffman Tree
	Bellman-Ford

