
HALF-EDGES AND RAY-SURFACE INTERSECTION

4
CS184: COMPUTER GRAPHICS AND IMAGING

Feb 14 - Feb 15, 2023

1 The Half-edge Data Structure

The half-edge data structure is a powerful representation used for polygon meshes. In
addition to the familiar vertices, edges, and faces, this data structure includes the half-
edge, an entity that serves as the ”glue” that connects the entities together. Using this
data structure, we can easily navigate the mesh and perform various mesh operations,
which include local operations like edge flip, edge split, edge collapse and mesh-scale
operations like Loop subdivision, mesh simplification, and mesh regularization.
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The mesh elements have the following relationships:

Mesh element Pointers
Vertex one halfedge
Edge one halfedge
Face one halfedge

Halfedge twin, next, vertex, edge, face

As the table might suggest, the halfedge connects the other mesh elements together. From
any vertex, edge, or face, we can get a reference to a halfedge; from that halfedge, we can
then access other halfedges, vertices, edges, and faces. These relationships allow us to
easily navigate the mesh.

1. Starting from a given vertex, traverse the mesh and return a std::vector contain-
ing all of the edges that are opposite that vertex. In the diagram below, the opposite
edges are labelled. Hint: Start with the vertex’s halfedge, then perform a do-while
loop until we return to the original halfedge.

std::vector<EdgeIter> getOppositeEdges(VertexIter v)

Solution:
{

std::vector<EdgeIter> edges;
HalfedgeIter h = v->halfedge();
HalfedgeIter start_h = h;
do {

edges.push_back(h->next()->edge());
h = h->next()->next()->twin();
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} while (h != start_h);
return edges;

}
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2. Let’s write a function that locally attenuates noise in a mesh through a diffusion pro-
cess. To do so, we will approximate the Laplacian operator using the umbrella oper-
ator at a specific vertex. Then, we will apply the approximated Laplacian to a given
vertex to locally smooth the mesh around that vertex. This void function should di-
rectly modify the vertex v’s position.

More specifically, given a vertex v at position x, access the vertex’s neighboring ver-
tices and compute the following value:

L(v) =
1

n

∑
vj∈N(v)

xj − x

where N(v) is the set of neighboring vertices of vertex v, xj is the position of neigh-
boring vertex vj , and n is the number of neighboring vertices.

Then, apply L(v) to slightly move the vertex v from position x to a new position x′

that makes the mesh slightly smoother around v:

x′ = x+ kL(v)

where k is a weight on the approximated Laplacian effects.

Note: When repeatedly applied throughout an entire mesh, this operation smoothes
out high frequencies while maintaining the mesh’s relative shape.

void diffuse(VertexIter v, float k)

Solution:
{

Vector3D L(0, 0, 0);
HalfedgeIter h = v->halfedge();
HalfedgeIter start_h = h;
int n = 0;
do {
VertexIter v_j = h->next()->vertex();
Vector3D dir = v_j->position() - v->position();
L = L + dir;
n++;
h = h->twin()->next();

} while (h != start_h);
v->position() = v->position() + k * L / n;

}
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3. The figure below shows some local structure of a mesh. To contract the edge connect-
ing vertices V0 and V2, we need to first update some fields of those elements shown
in the figure, then delete vertex V2, halfedges e1, e2, e4, e5, e7, e8, and faces f0, f1. Fill
in the blanks for how the following fields should be updated in order to minimize
changes in the whole operation.

e11 → next() =
f3 → halfedge() =
V0 → halfedge() =
e3 → face() =
e12 → vertex() =

Solution: e11 → next() = e0
f3 → halfedge() = e0/e10/e11
V0 → halfedge() = e0/e9/e12/e16
e3 → face() = f4
e12 → vertex() = V0
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2 Ray-Surface Intersection

Given a mesh representation of an object, we would like to render it onto a display. To do
so, we need to know which parts of the object are visible, where to put shadows, how to
apply the scene’s lighting, and more. The simplest (but rather slow) idea to handle these
problems is to take a ray and intersect it with each triangle in the mesh. There could be 0,
1, or multiple intersections.

Recall that a ray is defined by its origin o and a direction vector d and varies with ”time”
t for 0 <= t < ∞.

r(t) = o+ td

1. (a) As a warm-up, let’s rederive the equation for a ray intersection with an arbitrary
plane. Recall that a plane can be defined as any point p that satisfies the following
equation:

p : (p− p′) ·N = 0

Set p equal to r(t) and solve for t.

Solution: (p− p′) ·N = 0
(o+ td− p′) ·N = 0
(o− p′) ·N+ td ·N = 0
td ·N = (p′ − o) ·N
t = (p′−o)·N

d·N
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(b) What does it mean if we get a value of t < 0?

Solution: This means that the intersection point with the plane is behind the
ray’s origin. Since the ray only moves forward in the direction of d for positive
values of t, t < 0 indicates that this value of t is not a valid intersection with
the ray.

Note that this is true for any ray-surface intersection problem, not just with
planes.

(c) What does it mean if d ·N = 0?

Solution: When d ·N = 0, then the ray’s direction vector is perpendicular to
the plane’s normal vector N. Therefore, the ray is parallel to the plane and
either intersects for all values of t or has 0 intersections.

To figure out which one, plug in o into the plane equation and see if it satisfies
the equality.

2. Given the following implicit representation of an ellipsoid and the following ray, com-
pute the position(s) at which the ray intersects the ellipsoid.

f(x, y, z) =
x2

4
+ y2 +

z2

4
− 9

r(t) =< 0, 1, 0 > +t < 1, 0, 2 >

Start by substituting the ray r(t) into the function f(x, y, z) to get an expression f(o+
td). Set f(o + td) = 0 and solve for t. Then plug t back into the ray equation to find
the point(s) of intersection.

Solution: To get f(o + td) = 0, we substitute x = 0 + t · 1, y = 1 + t · 0, and
z = 0 + t · 2. This gives us:

t2

4
+ 12 +

(2t)2

4
− 9 = 0

t2

4
+

4t2

4
= 8

5t2

4
= 8

t2 =
32

5
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t = −4

√
2

5
, 4

√
2

5

Only the positive t result is a valid intersection with this ray, as the negative t result

is behind the ray’s origin. Plugging in t = 4
√

2
5
, we see that the ray intersects the

ellipsoid at < 0, 1, 0 > +4
√

2
5
< 1, 0, 2 >=< 4

√
2
5
, 1, 8

√
2
5
>.

CS 184 Spring 2024


	The Half-edge Data Structure
	Ray-Surface Intersection

