
RAY TRACING AND RADIOMETRY 5
CS184: COMPUTER GRAPHICS AND IMAGING

Feb 21 - Feb 22, 2024

1 Ray-Triangle Intersection

Given a mesh representation of an object, we would like to render it onto a display. To
do so, we need to know which parts of the object are visible, where to put shadows, how
to apply the scene’s lighting, and more. The simplest idea to handle these problems is to
take a ray and intersect it with each triangle in the mesh.

Recall that a ray is defined by its origin O and a direction vector D and varies with ”time”
t for 0 ≤ t < ∞.

r(t) = O+ tD. (1)

A point within a triangle P0P1P2 can be represented as

P = αP0 + βP1 + γP2, (2)

where α + β + γ = 1. Since α, β and γ are related, we can also write P as

P = (1− b1 − b2)P0 + b1P1 + b2P2. (3)

1. Let’s solve for the intersection of a ray and a triangle. Specifically, if we arrange the
unknowns t, b1 and b2 into a column vector x = [t, b1, b2]

T , can you get a matrix M and
a column vector b so that Mx = b?

Solution:

Since the intersection is both along the ray and on the triangle, we have

O+ tD = P0 + b1(P1 −P0) + b2(P2 −P0). (4)
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Thus,
O−P0 = −tD+ b1(P1 −P0) + b2(P2 −P0). (5)

Writing it in matrix form, we have

[
−D P1 −P0 P2 −P0

]  t
b1
b2

 = O−P0 (6)

So, M = [−D,P1 −P0,P2 −P0], b = O−P0.
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2. Now let’s derive the Möller-Trumbore algorithm! t

b1
b2

 =
1

S1 · E1

 S2 · E2

S1 · S
S2 ·D

 (7)

where E1 = P1 −P0, E2 = P2 −P0, S = O−P0, S1 = D× E2, S2 = S× E1.

Hint 1: (Cramer’s rule) Linear equations Mx = b can be simply solved using deter-
minants of matrices as:

x =
1

|M|

 |M1|
|M2|
|M3|

 , (8)

where Mi is the matrix M with its i-th column replaced by b.

Hint 2: Suppose A, B, C are column vectors, the determinant of the 3 × 3 matrix
[A,B,C] satisfy:

|A,B,C| = −(A×C) ·B = −(C×B) ·A = −(B×A) ·C. (9)

Solution: Applying Cramer’s rule, we immediately have t
u
v

 =
1

|M|

 |M1|
|M2|
|M3|

 (10)

=
1

| −D P1 −P0 P2 −P0 |

 | O−P0 P1 −P0 P2 −P0 |
| −D O−P0 P2 −P0 |
| −D P1 −P0 O−P0 |

 (11)

=
1

| −D E1 E2 |

 | S E1 E2 |
| −D S E2 |
| −D E1 S |

 (12)

Now let’s take a look at these determinants, we have

| −D E1 E2 | = − (−D× E2) · E1 = S1 · E1, (13)

| S E1 E2 | = − (E1 × S) · E2 = S2 · E2, (14)

| −D S E2 | = − (−D× E2) · S = S1 · S, (15)

| −D E1 S | = − (S× E1) · −D = S2 ·D. (16)
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3. Once you’ve solved for t, b1 and b2, what conditions must be satisfied so that you have
a valid ray-triangle intersection?

Solution: t ≥ 0, 0 ≤ b1 ≤ 1, 0 ≤ b2 ≤ 1, 0 ≤ 1− b1 − b2 ≤ 1.
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2 Bounding Volume Hierarchy

In ray tracing, bounding volumes are used to accelerate ray-triangle intersection tests. If
the ray does not intersect a bounding volume, it cannot intersect the triangles contained
within, allowing us to perform a batch rejection.

A bounding volume hierarchy (BVH) is simply a tree of bounding volumes. The bound-
ing volume at a given node encloses the bounding volumes of its children. The ray tracing
algorithm traverses this hierarchy to determine if the ray intersects an object.

1. Given a set of planar triangles, build a BVH following these rules:

• Always pick the longest axis to divide.

• Use barycenters of triangles to decide their relative positions.

• Keep the BVH as balanced as possible, i.e. try to ensure the same number of
triangles for children nodes.
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2. Given a box with corners (−2,−2,−2) and (2, 2, 2). Compute the entry and exit point
of this box for a ray that has origin (−3, 4, 5) and direction (1,−1,−2).

Solution: Intersecting the yz-slabs, we have

tx,1 = (−2− (−3))/1 = 1, (17)
tx,2 = (2− (−3))/1 = 5. (18)

Intersecting the xz-slabs, we have

ty,1 = (−2− 4)/(−1) = 6, (19)
ty,2 = (2− 4)/(−1) = 2. (20)

Intersecting the xy-slabs, we have

tz,1 = (−2− 5)/(−2) = 3.5, (21)
tz,2 = (2− 5/(−2) = 1.5. (22)

So we have

tx,min = 1, tx,max = 5, (23)
ty,min = 2, ty,max = 6, (24)
tz,min = 1.5, tz,max = 3.5. (25)

Then

tmin = max{tx,min, ty,min, tz,min} = 2, (26)
tmax = min{tx,max, ty,max, tz,max} = 3.5. (27)

Since tmin <= tmax and tmin > 0 and tmax > 0, we have two intersections. The entry
and exit points are at

(−3, 4, 5) + tmin(1,−1,−2) = (−1, 2, 1) (28)

and
(−3, 4, 5) + tmax(1,−1,−2) = (0.5, 0.5,−2). (29)
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3 Radiometry & Photometry

In computer graphics, we study radiometry and photometry to accurately simulate how
much light is emitted and received, so that we can generate photo-realistic images.

1. What’s the difference between radiant flux / power (Φ), radiant intensity (I), irradi-
ance (E) and radiance (L)? How does increasing the distance from the light source
affect these values?

Solution: The radiant flux (power) Φ is the energy emitted, reflected, transmitted
or received, per unit time.
The radiant intensity I is the power per unit solid angle emitted by a point light
source.
The irradiance E is the power per unit area incident on a surface point.
The radiance (L) is the power emitted, reflected, transmitted or received by a sur-
face, per unit solid angle, per unit projected area.

Their relations:
I =

dΦ

dω
, (30)

E =
dΦ

dA
, (31)

L =
dI

dA cos θ
=

d2Φ

dωdA cos θ
. (32)

For all of these values, only irradiance changes as we get further away from the
light source. Imagine a sphere surrounding the light source, where the radius is
equal to the distance from the light source. This light source always emits a fixed
amount of radiant flux.

This sphere will always have 4π steradians, but its surface area will increase as
the distance increases. Since we spread the same amount of flux over a greater
surface area, irradiance will decreases. As we spread it over the same number
of steradians, radiant intensity will not decrease. Radiance along each ray also
doesn’t decrease over distance, we just integrate over fewer rays when calculating
irradiance as the light source is further away.
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2. Supppose we use (θ, ϕ)-parameterization of directions. Recall that the solid angle
represents the ratio of the subtended area on a sphere to the radius squared, Ω = A

r2
.

Estimate the solid angle subtended by a patch that covers θ ∈ [π/6−π/12, π/6+π/12]
and ϕ ∈ [π/5 − π/24, π/5 + π/24]? (Hint: you may assume that the patch is small
enough. Recall or derive the differential solid angle dω, then use the values given.)

Solution: Under (θ, ϕ)-parameterization, we know that the differential solid angle
is dω = sin θ dθdϕ. When a patch is small enough, we can use this to approximate
its solid angle as

∆ω = sin θ∆θ∆ϕ, (33)

where ϕ is the azimuth angle, and θ the elevation angle, at the center of the patch.

In our specific case, the solid angle subtended by the patch is now

∆ω ≈ sin
π

6
·
[ π

12
−
(
− π

12

)]
·
[ π

24
−
(
− π

24

)]
(34)

=
π2

144
. (35)
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3. Calculate the irradiance at point p from a disk area light overhead with uniform ra-
diance L. (Hint: irradiance is an integral of incoming radiance over the hemisphere:
E(p) =

∫
H2 Li(p, ω) cos θ dω.)

Solution:

E(p) =

∫
H2

Li(p, ω) cos θ dω (36)

=

∫ 2π

ϕ=0

∫ α

θ=0

L cos θ sin θ dθdϕ (37)

= 2πL
sin2 θ

2

∣∣∣∣α
0

(38)

= πL sin2 α (39)

=
πLr2

r2 + h2
(40)
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4. Fill in the table below with the correct information.
Physics Symbol/-
Name

Radiometry
Unit/Name

Photometry
Unit/Name

Definition

Q Energy
Radiant Energy
Joules (W·s)

Luminous Energy
Lumen·sec Q =

∫ t1
t0

Φdt

Φ Flux(Power) Φ =

I Angular Flux
Density

I(ω) =

E Spatial Flux
Density

E(p) =

L Spatio-Angular
Flux Density

L(p, ω) =
= =

Solution:
Physics Symbol/-
Name

Radiometry
Unit/Name

Photometry
Unit/Name

Definition

Q Energy
Radiant Energy
Joules (W·s)

Luminous Energy
Lumen·sec Q =

∫ t1
t0

Φdt

Φ Flux(Power)
Radiant Power
W

Luminous Power
Lumen (Candela·sr) Φ = dQ

dt

I Angular Flux
Density

Radiant Inten-
sity W/sr

Luminous Intensity
Candela (Lumen/sr)

I(ω) = dΦ
dω

E Spatial Flux
Density

Irradiance (in),
Radiosity (out)
W/m2

Illuminance (in),
Luminosity (out)
Lux (Lumen/m2)

E(p) = dΦ(p)
dA

L Spatio-Angular
Flux Density

Radiance
W/m2/sr

Luminance
Nit
(Candela/m2)

L(p, ω) = d2Φ(p,ω)
dωdA cos θ

= dE(p)
dω cos θ

= dI(p,ω)
dA cos θ
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