SPLINES AND CURVES

CS184: COMPUTER GRAPHICS AND IMAGING

Feb 7 - Feb 8, 2024

Polynomial interpolation

In polynomial interpolation, our goal is to fit a polynomial given some information about
points and derivatives of the desired curve. As seen in lecture, we can solve this problem
by formulating it as a system of linear equations in the coefficients of the polynomial, and
then finding a solution to these equations.

1. List all degree 2 polynomials satisfying: f(0) = 1, f(1) = 2, f(2) = 5. What about
degree 3?

Solution: Let f(t) = at® + bt + ¢ be the degree 2 polynomial. The system of con-
straints we get is:

c=1
a+b+c=2
4a+2b+c=5

Solving the system yields a unique solution a = 1,b = 0,c = 1,s0 f(t) = t* + 1 s
the only degree 2 polynomial.

From linear algebra, any degree 3 polynomial f that satisfies these constraints can
be decomposed into fi(t) + f2(t) where f;(t) satisfies the three constraints, and
f2(0) = fa(1) = fo(2) = 0. We can take f1(t) = t* + 1. For fo(t) = at® + bt* + ct + d,
we get the following constraints:

d=0
a+b+c+d=0
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Qa+4b+2c+d=0

Solving, we get that b = —3a and ¢ = 2a. So, every f5(¢) has the form a(t* —3t*+2t).
This tells us that all the degree 3 polynomials that satisfy the constraints are of the
form f(t) = t* + 1+ a(t® — 3¢* + 2t), where a is an arbitrary real number.
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2. Suppose we have a list of constraints:
£(0) = po, £(0) = do, f(1) = pr, f'(1) = du,.., f(k) = pi, f'(k) = d. .
For a function f, what are the tradeoffs when either
* solving for a single 2k + 1 degree polynomial, versus

e taking the point and derivative constraints atiand i — 1 for¢ = 1,..., k and using
them to fit £ cubic Hermite splines?

Solution: If we solve for a single high-degree polynomial, it will have infinitely
many continuous derivatives. However, it may have wild behavior between the
control points, and furthermore, changing a single constraint will affect the entire
curve.

If we solve for k cubic Hermite splines, then the resulting curve will be continuous
and have a continuous derivative. The curve will have infinitely many continu-
ous derivatives between the control points, but may have a discontinuous second
derivative at the control points. However, changing a single constraint will only
change two of the cubic splines: those that have the control point as an endpoint.

3. A cubic polynomial f(t) = at® + bt* + ct + d is uniquely determined by specifying
both its values and its second derivatives att = 0 and ¢t = 1 (as opposed to its values
and its first derivatives, as in Hermite interpolation). Write out the system of linear
equations given by these constraints on f(0), f(1), f/(0), f(1).

Solution: This will yield four equations:

d = f(0)
atbtct+d = f(1)
26 = f"(0)

6a+20 = f(1)

4. Write the matrix which you would invert and apply to the vector (f(0), f(1), f”(0), f”(1))"
to recover a, b, ¢, and d in the previous problem.

Solution: .
a 0 001 f(0)
bl (1111 F(1)
cl 102 00 17(0)
d 6 2 00 (1)
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5. Now, compute the numerical answer for the problem above and use its columns to
identify four “basis polynomials” for this problem.

Solution:
a 0 0 —1/6 1/6 f(0)
bl o o 12 0 F(1)
cl -1 1 —-1/3 =1/6] | f"(0)
d 1 0 0 0 £(1)
The new basis polynomials are
ot ot
Go(t)=—-t+1, Gi(t)=t, Ga(t) =—5t3 3 Gs(t) -

Here’s a plot of these functions:
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de Casteljau’s algorithm

de Casteljau’s algorithm allows us to create a smooth Bézier curve from a series of control
points. Though we most commonly apply it to four points to get a cubic Bézier curve, it
can be applied to any number of points.

In order to find f(¢) on a curve defined for ¢ € [0, 1], de Casteljau gives us the following
iterative step:

* Given k + 1 points py, . . ., Pk, Create a new set of k points py, . .., pi_; by computing
pi = 1erp(pi7 Pi+1, t) )

where lerp(p;, piy1,t) = (1 — t)p; + tPit1.

Iteratively applying this step until we are left with a single point yields f(¢) for the Bézier
curve defined by the initial set of points.
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1. For a Bézier curve defined by 3 control points, what is the degree of the polynomial
you get from de Casteljau’s algorithm? What about for n points?

Solution: Three points requires a quadratic polynomial, and n points requires a
polynomial of degree n — 1.

One way to arrive at this answer is to look at the algebraic expression of Bézier
curves: a Bézier curve of order n needs n+1 points.

b"(t) = Z b, B (t)

where

b"(t) :Bézier curve of degreen n
b; :control points
B} (t) :Bernstein polynomial of degreen n

(-
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2. Use de Casteljau’s algorithm to find the point where ¢ = 1/2 on the Bézier curve
defined by these control points.

P1

P2

Po

P3

Solution:
P1

P2

f(1/2)

Po

P3

3. Use de Casteljau’s algorithm to find the point where ¢t = 1/3 on the Bézier curve
defined by these control points.
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Ps3

P1

P2

Po

Solution:
P3

P1

f(1/3)
P2

Po

4. Show that the point with parameter ¢ on the Bézier curve with control points pg, p1, P2, Ps3
is given by s®pg + 3s%tp1 + 3st’p2 + t*ps, where s = 1 — ¢. (Hint: apply de Casteljau’s
algorithm algebraically to the control points. With this setup, linear interpolation be-

tween two points qo and q; looks like sqq + tq;.)

Solution: Level 0: po, p1, P2, P3

Level 1: spg + tp1, sSp1+1tp2, Sp2+tps

Level 2: s(spo + tp1) + t(sp1 + tp2), s(sp1 + tp2) + t(sp2 + tps)
Simplify: s*pg + 2stpy + t*p2,  s*p1 + 2stpa + t?ps3
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Level 3: s(s?pg + 2stpy + t*pa) + t(s*p1 + 2stpa + t*p3)
Simplify: s3pg + 3s%tp1 + 3st’pa + t3ps

5. What is this matrix product? (Hint: don’t expand it. Instead, think about what each
matrix in the product does. How are they related to de Casteljau’s algorithm?)

s t 00
(s t)(gig) 0 s t 0
0 0 s t

Solution: Without doing any additional computation, the matrix product must
be (s*,3st, 3st?,t*). Why? Starting from the right, the first matrix takes a set of
points po, p1, P2, P3 and maps them to the three points that result in applying one
iteration of de Casteljau’s algorithm. The other two matrices in the product per-
form the remaining 2 iterations of the algorithm. So, applying this matrix product
to the points pg, p1, P2, Ps results in s’pg + 3s°tp; + 3st’pa + t3p3 by the previous
part. Hence, the matrix product must be (s?, 3s*¢, 3st?, t*).

Hence, applying this matrix (assuming s = 1 — ¢ as in the previous problem) to a
matrix of points

gives the point at parameter value ¢ on the respective Bézier curve.

Alternatively, you could just do the computation... but why would you do that?

:(53 3s%t 3st? 3
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