
SPLINES AND CURVES 3
CS184: COMPUTER GRAPHICS AND IMAGING

Feb 7 - Feb 8, 2024

1 Polynomial interpolation

In polynomial interpolation, our goal is to fit a polynomial given some information about
points and derivatives of the desired curve. As seen in lecture, we can solve this problem
by formulating it as a system of linear equations in the coefficients of the polynomial, and
then finding a solution to these equations.

1. List all degree 2 polynomials satisfying: f(0) = 1, f(1) = 2, f(2) = 5. What about
degree 3?

Solution: Let f(t) = at2 + bt + c be the degree 2 polynomial. The system of con-
straints we get is:

c = 1

a+ b+ c = 2

4a+ 2b+ c = 5

Solving the system yields a unique solution a = 1, b = 0, c = 1, so f(t) = t2 + 1 is
the only degree 2 polynomial.

From linear algebra, any degree 3 polynomial f that satisfies these constraints can
be decomposed into f1(t) + f2(t) where f1(t) satisfies the three constraints, and
f2(0) = f2(1) = f2(2) = 0. We can take f1(t) = t2 + 1. For f2(t) = at3 + bt2 + ct+ d,
we get the following constraints:

d = 0

a+ b+ c+ d = 0
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8a+ 4b+ 2c+ d = 0

Solving, we get that b = −3a and c = 2a. So, every f2(t) has the form a(t3−3t2+2t).
This tells us that all the degree 3 polynomials that satisfy the constraints are of the
form f(t) = t2 + 1 + a(t3 − 3t2 + 2t), where a is an arbitrary real number.
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2. Suppose we have a list of constraints:

f(0) = p0, f
′(0) = d0, f(1) = p1, f

′(1) = d1, . . . , f(k) = pk, f
′(k) = dk .

For a function f , what are the tradeoffs when either

• solving for a single 2k + 1 degree polynomial, versus

• taking the point and derivative constraints at i and i− 1 for i = 1, . . . , k and using
them to fit k cubic Hermite splines?

Solution: If we solve for a single high-degree polynomial, it will have infinitely
many continuous derivatives. However, it may have wild behavior between the
control points, and furthermore, changing a single constraint will affect the entire
curve.

If we solve for k cubic Hermite splines, then the resulting curve will be continuous
and have a continuous derivative. The curve will have infinitely many continu-
ous derivatives between the control points, but may have a discontinuous second
derivative at the control points. However, changing a single constraint will only
change two of the cubic splines: those that have the control point as an endpoint.

3. A cubic polynomial f(t) = at3 + bt2 + ct + d is uniquely determined by specifying
both its values and its second derivatives at t = 0 and t = 1 (as opposed to its values
and its first derivatives, as in Hermite interpolation). Write out the system of linear
equations given by these constraints on f(0), f(1), f ′′(0), f ′′(1).

Solution: This will yield four equations:

d = f(0)
a+ b+ c+ d = f(1)

2b = f ′′(0)
6a+ 2b = f ′′(1)

4. Write the matrix which you would invert and apply to the vector (f(0), f(1), f ′′(0), f ′′(1))T

to recover a, b, c, and d in the previous problem.

Solution: 
a

b
c
d

 =


0 0 0 1
1 1 1 1
0 2 0 0
6 2 0 0


−1

f(0)
f(1)
f ′′(0)
f ′′(1)


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5. Now, compute the numerical answer for the problem above and use its columns to
identify four “basis polynomials” for this problem.

Solution: 
a

b
c
d

 =


0 0 −1/6 1/6
0 0 1/2 0
−1 1 −1/3 −1/6
1 0 0 0




f(0)
f(1)
f ′′(0)
f ′′(1)


The new basis polynomials are

G0(t) = −t+ 1, G1(t) = t, G2(t) = −t3

6
+

t2

2
− t

3
, G3(t) =

t3

6
− t

6
.

Here’s a plot of these functions:

2 de Casteljau’s algorithm

de Casteljau’s algorithm allows us to create a smooth Bézier curve from a series of control
points. Though we most commonly apply it to four points to get a cubic Bézier curve, it
can be applied to any number of points.

In order to find f(t) on a curve defined for t ∈ [0, 1], de Casteljau gives us the following
iterative step:

• Given k+ 1 points p0, . . . ,pk, create a new set of k points p′
0, . . . ,p

′
k−1 by computing

p′
i = lerp(pi,pi+1, t) ,

where lerp(pi,pi+1, t) = (1− t)pi + tpi+1.

Iteratively applying this step until we are left with a single point yields f(t) for the Bézier
curve defined by the initial set of points.
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1. For a Bézier curve defined by 3 control points, what is the degree of the polynomial
you get from de Casteljau’s algorithm? What about for n points?

Solution: Three points requires a quadratic polynomial, and n points requires a
polynomial of degree n− 1.

One way to arrive at this answer is to look at the algebraic expression of Bézier
curves: a Bézier curve of order n needs n+1 points.

bn(t) =
n∑

j=0

bjB
n
j (t)

where

bn(t) :Bézier curve of degreen n
bj :control points

Bn
j (t) :Bernstein polynomial of degreen n(

n

j

)
tj(1− t)n−j
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2. Use de Casteljau’s algorithm to find the point where t = 1/2 on the Bézier curve
defined by these control points.

p0

p1

p2

p3

Solution:

p0

p1

p2

p3

f(1/2)

3. Use de Casteljau’s algorithm to find the point where t = 1/3 on the Bézier curve
defined by these control points.
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p0

p1

p2

p3

Solution:

p0

p1

p2

p3

f(1/3)

4. Show that the point with parameter t on the Bézier curve with control points p0,p1,p2,p3

is given by s3p0 + 3s2tp1 + 3st2p2 + t3p3, where s = 1− t. (Hint: apply de Casteljau’s
algorithm algebraically to the control points. With this setup, linear interpolation be-
tween two points q0 and q1 looks like sq0 + tq1.)

Solution: Level 0: p0,p1,p2,p3

Level 1: sp0 + tp1, sp1 + tp2, sp2 + tp3

Level 2: s(sp0 + tp1) + t(sp1 + tp2), s(sp1 + tp2) + t(sp2 + tp3)
Simplify: s2p0 + 2stp1 + t2p2, s2p1 + 2stp2 + t2p3
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Level 3: s(s2p0 + 2stp1 + t2p2) + t(s2p1 + 2stp2 + t2p3)
Simplify: s3p0 + 3s2tp1 + 3st2p2 + t3p3

5. What is this matrix product? (Hint: don’t expand it. Instead, think about what each
matrix in the product does. How are they related to de Casteljau’s algorithm?)

(
s t

)(s t 0
0 s t

)s t 0 0
0 s t 0
0 0 s t



Solution: Without doing any additional computation, the matrix product must
be (s3, 3s2t, 3st2, t3). Why? Starting from the right, the first matrix takes a set of
points p0,p1,p2,p3 and maps them to the three points that result in applying one
iteration of de Casteljau’s algorithm. The other two matrices in the product per-
form the remaining 2 iterations of the algorithm. So, applying this matrix product
to the points p0,p1,p2,p3 results in s3p0 + 3s2tp1 + 3st2p2 + t3p3 by the previous
part. Hence, the matrix product must be (s3, 3s2t, 3st2, t3).

Hence, applying this matrix (assuming s = 1 − t as in the previous problem) to a
matrix of points 

p0
T

p1
T

p2
T

p3
T


gives the point at parameter value t on the respective Bézier curve.

Alternatively, you could just do the computation... but why would you do that?

(
s t

)(s t 0
0 s t

)s t 0 0
0 s t 0
0 0 s t


=

(
s2 2st t2

)s t 0 0
0 s t 0
0 0 s t


=

(
s3 3s2t 3st2 t3

)
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