
Homework 1: Rasterizer

In this assignment you will implement a simple rasterizer, including
features like drawing triangles, supersampling, hierarchical transforms,
and texture mapping with antialiasing. At the end, you'll have a
functional vector graphics renderer that can take in a simplified version
of SVG (Scalable Vector Graphics) files, which are widely used on the
internet.

Homework Structure

The homework has 6 tasks, worth a total of 100 possible points. Some
require only a few lines of code, while others are more substantial.

Task 1: Drawing Single-Color Triangles (20 pts)

Task 2: Antialiasing by Supersampling (20 pts)

Task 3: Transforms (10 pts)

login with 

CS184/284A Policies Staff Readings Resources Comments

https://cs184.eecs.berkeley.edu/auth/github
https://cs184.eecs.berkeley.edu/sp24
https://cs184.eecs.berkeley.edu/sp24/policies
https://cs184.eecs.berkeley.edu/sp24/staff
https://cs184.eecs.berkeley.edu/sp24/readings
https://cs184.eecs.berkeley.edu/sp24/resources
https://cs184.eecs.berkeley.edu/sp24/comments

Task 4: Barycentric coordinates (10 pts)

Task 5: "Pixel sampling" for texture mapping (15 pts)

Task 6: "Level sampling" with mipmaps for texture mapping (25
pts)

Part 7: Extra Credit - Draw Something Creative!

Logistics

Deadline

Homework 1 is due Tuesday 2/13, 11:59PM. Both your code and
write-up need to be turned in for your submission to be complete;
assignments which are turned in after 11:59pm will use one of your late
days -- there are no late minutes or late hours.

Partners

You can work with a partner on this homework. If you work with a
partner, both of you should join the same team on Github Classroom.
You should also produce 1 writeup and 1 Gradescope submission with
your partner added to the team on Gradescope.

Checkpoint Quiz

There is a Gradescope Checkpoint quiz for this homework, due
Friday 2/2, 11:59PM. This short quiz is intended to help you get
started on Homework 1. The content necessary for answering all
questions can be found on the HW 1 spec or in lecture material.

This checkpoint can be used to gain "buffer points" on the assignment.
As long as you get at least 4 out of the 7 content-questions (Q1-7)
correct, AND submit a valid screenshot of your homework building
(Q8), you'll get the full 5 buffer points. No buffer points will be given if
you did not meet these requirements; no late submissions will be
allowed for the checkpoint quiz. These 5 buffer points will be added to
your HW 1 grade, capped at increasing your score to 100. For

example, if you earned 96 points on the base homework and 2 points
of extra credit, the 5 buffer points will bring your score up to 100, and
the extra credit will bring your total score to 102.

Homework Parties

We will have 5 homework parties:

Date/Time Location

Fri 2/2 4-6pm Soda 310

Wed 2/7 5-7pm Soda 380

Fri 2/9 1-3pm Berkeley Way West 1st Floor (Room TBD)

Mon 2/12 5-7pm Soda 380

Tue 2/13 1-3pm Berkeley Way West 1st Floor (Room TBD)

Academic honesty

Please do not post code to a public GitHub repository, even after the
class is finished, since these assignments will be reused both here and
at other universities in the future.

The homeworks are to be completed individually, unless you are
working with a partner. You are welcome to discuss the various parts of
the assignments with your classmates, but you must implement the
algorithms yourself. You are free to share all code with your partner.

Getting started

First, accept the assignment from your CS184/284A website profile,
following the instructions from GitHub Classroom. Then, clone the
generated private repo. Make sure you clone your private repo.

$ git clone <YOUR_PRIVATE_REPO>

Please consult this how to build assignments for CS184 article for
more information on how to setup and build the assignment.

https://cs184.eecs.berkeley.edu/sp24/docs/building-assignments

As you go through the assignment, refer to the write-up guidelines and
deliverables section below. It is recommended that you complete
each section's write-up as you finish that section. It's generally not
a good idea to wait until the end to start your writeup. You may also
find it helpful to skim the rubric before beginning your work.

Important: To avoid compression artifacts in your images, please do
not convert the PNG screenshot images saved by the GUI into JPG or
other formats! PNG images are losslessly compressed.

Finally, you may find the following resources helpful:

C++ Guide for some quick tips and tricks on getting started with C++.
A slightly more detailed C++ guide can be found here.

Images as Data on how images and colors are often represented in
code.

Vectors and Matrices in the CGL Library for a quick refresher on
declaring and using vectors and matrices.

CGL Vectors API for the API listing of CGL Vectors library.

Using the GUI

You can run the executable with the command

./draw [path to svg file/folder to render]

For example, you could run this command:

./draw ../svg/basic/test1.svg

https://cs184.eecs.berkeley.edu/sp24/docs/cp-intro
https://github.com/Bryce-Summers/Writings/blob/master/Programming%20Guides/C_plus_plus_guide.pdf
https://cs184.eecs.berkeley.edu/sp24/docs/images-as-data
https://cs184.eecs.berkeley.edu/sp24/docs/cgl-primer
https://cs184.eecs.berkeley.edu/sp24/docs/cgl-vector-docs

Note: For Visual Studio, the output folder is 3 layers deep.
Therefore you should use ./draw ../../../svg/basic/test1.svg
For Linux / Unix / Mac commandline build, it should be 1 layer
deep: ./draw ../svg/basic/test1.svg All the IDEs has some form
of debug / launch settings. You can use those to specify the SVG
file and then you can use the debugger provided by the IDE.
Anyways, the path should always be relative to the executable file!

You'll see a flower composed of blue dots, based on point and line
rasterization provided in the starter code. Most other SVG files won't
render correctly until you work through the assignment. Here are
the keyboard shortcuts available (some depend on you implementing
various parts of the assignment):

Key Action

space return to original viewpoint

- decrease sample rate

= increase sample rate

Z toggle the pixel inspector

P switch between texture filtering methods on pixels

L
switch between texture filtering methods on mipmap
levels

S save a PNG image screenshot in the current directory

1 -
9

switch between svg files in the loaded directory

The argument passed to draw can either be a single file or a directory
containing multiple svg files, as in

./draw ../svg/basic/

If you load a directory with up to 9 files, you can switch between them
using the number keys 1-9 on your keyboard.

Familiarize Yourself with the Starter Code

Most of your modifications will be constrained to implementing or
modifying functions in rasterizer.cpp , transforms.cpp and
 texture.cpp .

In addition to modifying these, you will need to understand other
source and header files as you work through the homework. As one
example, the starter code for this and future assignments use the CGL
library. For this assignment, you may want to familiarize yourself with
classes defined in vector2D.h , matrix3x3.h and color.h .

Here is a brief sketch of what happens when you launch draw :

1. An SVGParser (in svgparser.h/cpp) reads in the input svg file(s)
2. It launches a OpenGL Viewer containing a DrawRend (in

 drawrend.h/cpp) renderer, which enters an infinite loop and waits
for input from the mouse and keyboard.

3. In DrawRend::redraw() function, the high-level drawing work is
done by the various SVGElement child classes (in svg.h/cpp),
which then pass their low-level point, line, and triangle
rasterization data to appropriate methods of a Rasterizer class.

A Simple Example: Drawing Points

You are given starter code that already implements drawing of 2D
points. To see how this works, begin by taking a look at SVG::draw() in
 svg.h .

1. The SVG object draws all elements in the SVG file via a sequence
of calls to their draw() functions.

2. Each element type calls an appropriate draw function on a
 Rasterizer object.

In the case of the Point element type, Point::draw()
eventually calls the concrete draw function implemented in
 RasterizerImp::rasterize_point() in rasterizer.cpp . The
position of SVG elements in an SVG file is defined in a local
coordinate frame, so Point::draw() transforms the point's

position into screen-space coordinates before passing it to
 RasterizerImp::rasterize_point() .

The function RasterizerImp::rasterize_point() is responsible for
actually drawing the point. In this assignment we define screen space
for an output image of size (target_w, target_h) as follows:

 (0, 0) corresponds to the top-left of the output image
 (target_w, target_h) corresponds to the bottom-right of the
output image
Please assume that screen sample positions are located at
half-integer coordinates in screen space. That is, the top-left
sample point is at coordinate (0.5, 0.5), and the bottom-right
sample point is at coordinate (target_w-0.5, target_h-0.5).

You may also wish to read this resource for more detail on how colors
and images are represented as data.

To rasterize points, we adopt the following rule: a point covers at most
one screen sample: the closest sample to the point in screen space.
This is implemented as follows, assuming (x, y) is the screen-space
location of a point.

https://cs184.eecs.berkeley.edu/sp24/docs/images-as-data

int sx = (int) floor(x);
int sy = (int) floor(y);

Of course, the code should not attempt to modify the render target
buffer at invalid pixel locations.

if (sx < 0 || sx >= target_w) return;
if (sy < 0 || sy >= target_h) return;

If the points happen to be on screen, we fill in the pixel with the RGB
color associated with the point.

 rgb_framebuffer_target[3 * (y * width + x)] = (unsigned char)(c
 rgb_framebuffer_target[3 * (y * width + x) + 1] = (unsigned char
 rgb_framebuffer_target[3 * (y * width + x) + 2] = (unsigned char

(Note: In this assignment, we do not support partial transparency or
alpha blending, even though this is part of the SVG file format.)

Homework Tasks

Task 1: Drawing Single-Color Triangles (20
pts)

Relevant lecture: 2

In this task, you will implement the rasterize_triangle function in
 rasterizer.cpp . Your solution should:

Rasterize the triangle by using the sampling methods described in
class.
For each pixel, please perform the point-in-triangle tests with a
sample point in the center of the pixel, not the corner. The
coordinates of your sample should be equal to an integer point
plus (.5,.5).

https://cs184.eecs.berkeley.edu/sp24/lecture/2/digital-drawing

In Part 2 you will implement sub-pixel supersampling, but here you
should just sample once per pixel and call the fill_pixel()
helper function. Follow the example in the rasterize_point
function in the starter code.
To receive full credit, your implementation should assume that a
sample on the boundary of the triangle is to be drawn. You are
encouraged but not required to implement the OpenGL edge rules
for samples lying exactly on an edge. Do make sure that none of
your edges are left un-rasterized.
Your implementation should be at least as efficient as sampling
only within the bounding box of the triangle (not simply every pixel
in the framebuffer).
Your code should draw the triangle regardless of the winding order
of the vertices (i.e. clockwise or counter-clockwise). Check
 svg/basic/test6.svg .

When finished, you should be able to render test SVG files with single-
color polygons, which are triangulated into triangles elsewhere in the
code before being passed to your function. Files basic/test3.svg ,
 basic/test4.svg , basic/test5.svg , and basic/test6.svg should
render correctly.

For convenience, here is a list of functions you will need to modify:

1. RasterizerImp::rasterize_triangle() function in rasterizer.cpp .

Extra Credit: Make your triangle rasterizer super fast (e.g., by
factoring redundant arithmetic operations out of loops, minimizing
memory access, and not checking every sample in the bounding box).
Write about the optimizations you used. Use clock() or
 std::chrono::high_resolution_clock to get precise timing
comparisons between your basic and optimized implementations.

Task 2: Antialiasing by Supersampling (20
pts)

Relevant lecture: 3

https://cs184.eecs.berkeley.edu/sp24/lecture/3/sampling-aliasing-and-antialiasing

Use supersampling to antialias your triangles. The sample_rate
parameter in DrawRend (adjusted using the - and = keys) tells you
how many samples to use per pixel.

The image below shows how sampling four times per pixel produces a
better result than just sampling once. The fraction of the supersamples
within the triangle yields a smoother edge.

To implement supersampling, please sample at sqrt(sample_rate) *
sqrt(sample_rate) grid locations distributed over the pixel area.
(sample_rate is a member variable of the RasterizerImp class)

One reasonable way to think about supersampling is simply rasterizing
an image that is higher resolution, then downsampling the higher
resolution image to the output resolution of the framebuffer.

The original fill_pixel function used in Task 1 directly draws onto the
framebuffer, but for supersampling, you should draw into the
sample_buffer first, filling all the subsamples corresponding to the
output pixel.

To reiterate the overall pipeline of the rasterizer:

1. SVGParser parses the svg file into SVG class representation.
2. When rasterization starts, the renderer (DrawRend::redraw) calls

SVG::draw.
3. SVG::draw calls the specific line / triangle / point rasterization

functions to generate the image primitive by primitive.
4. DrawRend::redraw calls line rasterization to draw the square

boundary.
5. DrawRend::redraw calls RasterizerImp::resolve_to_framebuffer()

to translate the internal buffer of the rasterizer to the screenbuffer
so the image can be displayed and written into a file.

Suggestions for this task:

You will need to manage appropriate memory to store your
supersample data. We recommend that you use the
 RasterizerImp::sample_buffer vector (see file rasterizer.h) for
this purpose. It depends on your algorithm, but it is likely that the
size of the sample buffer you need will depend on the framebuffer
dimensions (which changes when the window is resized) and the
supersampling rate (which changes with keystrokes as described
above). You will need to update the size of the buffer dynamically.
There are hints below and in the code for where you may want to
manage the size of your buffer.
Clear the values in your sample buffer memory and/or framebuffer
appropriately at the beginning of redrawing the frame. This is
erasing the frame before you start drawing.
Update your rasterize_triangle function to perform
supersampling into your supersample buffer memory. There are
multiple ways to organize the data in your supersample buffer, and
the choice is up to you.

Based on the above way to think about supersampling, your
sample buffer is just a temporary, higher-resolution
framebuffer. For example, 4x4 supersampling with a
1000x1000 pixel framebuffer means rasterizing a 4000x4000
(high-res) image of the scene into your sample buffer. After
you rasterize the high-res image, you need to downsample to
1000x1000 final pixels by averaging down the 4x4 grid of

sample values that are related to each output pixel. In this
way of thinking, you need to store more memory in order to
perform the high-res supersampled rasterization. (Test your
understanding: can you achieve the same results without
needing more memory, and if so, what are the engineering
tradeoffs?)

At the end of rasterizing all the scene elements, you will need to
populate the framebuffer from your supersamples. This is
sometimes called resolving the samples into the framebuffer.
Notice that the RasterizerImp::resolve_to_framebuffer function is
called as the last step in rendering the frame in drawrend.cpp , so
you may wish to implement this part of your algorithm here.
Note that you will need to convert between different color
datatypes. RasterizerImp::rgb_framebuffer_target stores a
pointer to the framebuffer pixel data that is finally drawn to the
display. rgb_framebuffer_target is an array of 8-bit values for
each of the R, G and B components of each pixel's color -- this is
the compact data format expected by most real graphics systems
for drawing to the display. In contrast, the
 RasterizerImp::sample_buffer variable that we suggest you use
for your supersample memory is an array of Color objects that
store R, G and B internally as floating point values. You may wish
to familiarize yourself with the Color class. You may need to
convert between these datatypes. Watch out for floating point to
integer conversion errors, such as rounding and overflow.
In most of graphics field, color is just the same as any other vector
data: They are 3 dimensional (4 if it has the alpha channel). This
means any XYZ vector representing a point or a direction could
also represent a color. We will cover color space and color theory
later in this course.
You will likely find that points and lines stop rendering correctly
after your supersampling modifications. Lines and points are not
supersampled, but they still need to be drawn into the
supersample buffer. Modify RasterizerImp::fill_pixel if needed
to restore functionality. One way to think about this is to fill all the
supersamples corresponding to the point or line with the same
color, so it comes out as a single sampled pixel in the framebuffer.
You do NOT need to antialias points and lines.

Once your implementation is complete, your triangle edges should look
noticeably smoother when using more than one sample per pixel! You
can examine the differences closely using the pixel inspector (see
controls listed above). Also note that, it may take several seconds to
switch to a higher sampling rate.

For convenience, here is a list of functions you will likely want to use or
modify.

1. For managing supersample buffer memory:
 RasterizerImp::sample_buffer ,
 RasterizerImp::set_sample_rate() ,
 RasterizerImp::set_framebuffer_target() ,
 RasterizerImp::clear_buffers() in rasterizer.h/cpp .

2. To implement triangle supersampling:
 RasterizerImp::rasterize_triangle() ,
 RasterizerImp::fill_pixel() , in rasterizer.cpp .

3. For resolving supersamples to framebuffer:
 RasterizerImp::resolve_to_framebuffer() .

Extra Credit: Implement an alternative sampling pattern, such as
jittered or low-discrepancy sampling. Create comparison images
showing the differences between grid supersampling and your new
pattern. Try making a scene that contains aliasing artifacts when
rendered using grid supersampling but not when using your pattern.

Task 3: Transforms (10 pts)

Relevant lecture: 4

Implement the three transforms in the transforms.cpp file according to
the SVG spec. The matrices are 3x3 because they operate in
homogeneous coordinates -- you can see how they will be used on
instances of Vector2D by looking at the way the * operator is
overloaded in the same file.

Once you've implemented these transforms, svg/transforms/robot.svg
should render correctly, as follows:

https://cs184.eecs.berkeley.edu/sp24/lecture/4/transforms
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform

For convenience, here is a list of functions in transforms.cpp you will
need to modify:

1. translate
2. scale
3. rotate

Extra Credit: Add an extra feature to the GUI. For example, you could
make two unused keys to rotate the viewport. Save an example image
to demonstrate your feature, and write about how you modified the
SVG to NDC and NDC to screen-space matrix stack to implement it.

Task 4: Barycentric coordinates (10 pts)

Relevant lecture: 5

Implement
 RasterizerImp::rasterize_interpolated_color_triangle(...) to draw
a triangle with colors defined at the vertices and interpolated across
the triangle area using barycentric interpolation.

Once Part 4 is done, you should be able to see a color wheel in
svg/basic/test7.svg (below, right).

For convenience, here is a list of functions you will need to modify:

1. RasterizerImp::rasterize_interpolated_color_triangle(...)

https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture-mapping

Task 5: "Pixel sampling" for texture
mapping (15 pts)

Relevant lecture: 5

Implement RasterizerImp::rasterize_textured_triangle(...) to draw
a triangle with colors defined by texture mapping with the given 2D
texture coordinates at each vertex and the given Texture image. Here
in Task 5 you will implement texture sampling on the full-resolution
texture image using nearest neighbor and bilinear interpolation, as
described in lecture.

The GUI toggles RasterizerImp 's PixelSampleMethod variable psm
using the 'P' key. When psm == P_NEAREST , you should use nearest-
pixel sampling, and when psm == P_LINEAR , you should use bilinear
sampling. Please do so by implementing Texture::sample_nearest and
 Texture::sample_bilinear functions and calling them from
 RasterizerImp::rasterize_textured_triangle(...) . This approach will
allow you to reuse these functions for trilinear texture filtering in Task 6.

Once Part 5 is done, you should be able to rasterize the svg files in
svg/texmap/, which rely on texture maps.

Notes:

The Texture struct in texture.h stores a mipmap, as described
in lecture, of texture images in decreasing resolution, in the
 mipmap variable. Each texture image is stored as an object of type
 MipLevel .
 MipLevel::texels stores the texture image pixels in the typical
RGB format described above for framebuffer pixels.
 MipLevel::get_texel(...) may be helpful.

https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture-mapping

At this part of the homework, you haven't implemented level
sampling (mip-mapping) yet, so the program should default to
zero-th level (full resolution).

For convenience, here is a list of functions you will need to modify:

1. RasterizerImp::rasterize_textured_triangle
2. Texture::sample_nearest
3. Texture::sample_bilinear

Task 6: "Level sampling" with mipmaps for
texture mapping (25 pts)

Relevant lecture: 5

Finally, update RasterizerImp::rasterize_textured_triangle(...) to
support sampling different mipmap levels (MipLevel s). The GUI
toggles RasterizerImp 's LevelSampleMethod variable lsm using the L

key. Please implement the following level sampling methods in the
helper function Texture::sample .

When lsm == L_ZERO , you should sample from the zero-th
 MipLevel , as in Part 5.
When lsm == L_NEAREST , you should compute the nearest
appropriate mipmap level and pass that level as a parameter to
the nearest or bilinear sample function.
When lsm == L_LINEAR , you should compute the mipmap level as
a continuous number. Then compute a weighted sum of using one
sample from each of the adjacent mipmap levels as described in
lecture.

In addition, implement Texture::get_level as a helper function. You
will need (,) and (,) to calculate the correct mipmap level.

In order to get these values corresponding to a point (x, y) inside a
triangle, you must perform the following.

1. Calculate the uv barycentric coordinates of (x, y), (x + 1, y),
and (x, y + 1) in rasterize_textured_triangle(...) as sp.p_uv ,
 sp.p_dx_uv , and sp.p_dy_uv , assign them to a SampleParams

dx
du​

dx
dv​

dy
du​

dy
dv​

https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture-mapping

struct sp , along with other values required by the struct, and pass
 sp to Texture::get_level

2. Calculate the difference vectors sp.p_dx_uv - sp.p_uv and
 sp.p_dy_uv - sp.p_uv inside Texture::get_level , and finally

3. Scale up the difference vectors accordingly by the width and
height of the full-resolution texture image.

With these, you can proceed with the calculation from the lecture
slides.

Notes:

The lsm and psm variables can be set independently and
interacted independently. In other words, all combinations of psm==
[P_NEAREST, P_LINEAR] x lsm==[L_ZERO, L_NEAREST, L_LINEAR] are
valid.
When lsm == L_LINEAR and psm == P_LINEAR , this is known as
trilinear sampling, or trilinear texture filtering, as described in
lecture.
You may find it helpful to visualize what parts of the image use
different levels of the mipmap. One way to do this is by
normalizing the value returned by Texture::get_level by the
maximum level (i.e. size of the mipmap) and have that value
returned by Texture::sample as a color. Zoom in and out of the
image to see how the levels change. This is a great way to both
debug your implementation as well as gain intuition about level
sampling! See below for two examples, where we zoom out/in to
illustrate how the computed levels change.
Please be careful do not make copies of an entire Miplevel. Make
sure you always use a pointer or a reference to access the
miplevel. Copying entire miplevels as arguments is extremely
slow!

For convenience, here is a list of functions you will need to modify:

1. RasterizerImp::rasterize_textured_triangle
2. Texture::sample
3. Texture::get_level

Extra Credit: Implement anisotropic filtering or summed area tables.
Show comparisons of your method to nearest, bilinear, and trilinear
sampling. Use clock() to measure the relative performance of the
methods.

Potential Extra Credit - Draw
Something Creative!

Use your newfound powers to render something fun. You can look up
the svg specifications online for matrix transforms and for Point, Line,
Polyline, Rect, Polygon, and Group classes. The ColorTri and TexTri
are our own inventions, so you can intuit their parameters by looking at
the svgparser.cpp file. You can either try to draw something "by hand"
or try to output an interesting pattern programmatically. For example,
we wrote some simple programs to generate the texture mapped svg
files in the texmap directory as well as the color wheel in
basic/test7.svg.

Flex your right or left brain -- either show us your artistic side, or
generate awesome procedural patterns with code. This could involve a
lot of programming either inside or outside of the codebase! If you write
a script to generate procedural svg files, include it in your submission
and briefly explain how it works.

Tips and guidelines for your submission:

Your resulting png screenshot should be 800x800 resolution. Keep
this in mind when writing your svg file.
Use the GUI's 'S' functionality to save your screenshot as a png.
Don't take your own screenshot of your rasterized result, or you'll
ruin the quality of your hard work!
Note: The rasterizer cannot display svg Path elements, so do not
include any curves in the svg you wish to load.

Students will vote on their favorite submissions and the top voted
submission(s) will receive extra credit! More details regarding the art
competition will be announced next week. Stay in tune!

https://en.wikipedia.org/wiki/Anisotropic_filtering
https://en.wikipedia.org/wiki/Summed_area_table

Submission

Please consult this article on how to submit the assignment.

You will submit your code as well as some deliverables (see below) in
a webpage write-up.

Homework write-up guidelines and
instructions

We have provided a simple HTML skeleton in index.html found within
the docs directory to help you get started and structure your write-up.

You are also welcome to create your own webpage report from scratch
using your own preferred frameworks or tools. However, please follow
the same overall structure as described in the deliverables
section below.

The goals of your write-up are for you to (a) think about and articulate
what you've built and learned in your own words, (b) have a write-up of
the homework to take away from the class. Your write-up should
include:

An overview of the homework, your approach to and
implementation for each of the parts, and what problems you
encountered and how you solved them. Strive for clarity and
succinctness.
On each part, make sure to include the results described in the
corresponding Deliverables section in addition to your explanation.
If you failed to generate any results correctly, provide a brief
explanation of why.
The final (optional) part for the art competition is where you have
the opportunity to be creative and individual, so be sure to provide
a good description of what you were going for and how you
implemented it.
Clearly indicate any extra credit items you completed, and provide
a thorough explanation and illustration for each of them.

https://cs184.eecs.berkeley.edu/sp24/docs/submitting-assignments

The write-up is one of our main methods of evaluating your work, so it
is important to spend the time to do it correctly and thoroughly. Plan
ahead to allocate time for the write-up well before the deadline.

Write-up Deliverables and Rubric

Note that this rubric is rather coarse. The content and quality of your
write-up are extremely important, and you should make sure to at least
address all the points listed below. The extra credit portions are
intended for students who want to challenge themselves and explore
methods beyond the fundamentals, and are not worth a large amount
of points. In other words, don't necessarily expect to use the extra
credit points on these homeworks to make up for lost points elsewhere.

Overview

Give a high-level overview of what you implemented in this homework.
Think about what you've built as a whole. Share your thoughts on what
interesting things you've learned from completing the homework.

Task 1 (20 pts)

Walk through how you rasterize triangles in your own words.
Explain how your algorithm is no worse than one that checks each
sample within the bounding box of the triangle.
Show a png screenshot of basic/test4.svg with the default viewing
parameters and with the pixel inspector centered on an interesting
part of the scene.
Extra credit: Explain any special optimizations you did beyond
simple bounding box triangle rasterization, with a timing
comparison table (we suggest using the c++ clock() function
around the svg.draw() command in DrawRend::redraw() to
compare millisecond timings with your various optimizations off
and on).

Task 2 (20 pts)

Walk through your supersampling algorithm and data structures.
Why is supersampling useful? What modifications did you make to

the rasterization pipeline in the process? Explain how you used
supersampling to antialias your triangles.
Show png screenshots of basic/test4.svg with the default viewing
parameters and sample rates 1, 4, and 16 to compare them side-
by-side. Position the pixel inspector over an area that showcases
the effect dramatically; for example, a very skinny triangle corner.
Explain why these results are observed.
Extra credit: If you implemented alternative antialiasing methods,
describe them and include comparison pictures demonstrating the
difference between your method and grid-based supersampling.

Task 3 (10 pts)

Create an updated version of svg/transforms/robot.svg with
cubeman doing something more interesting, like waving or
running. Feel free to change his colors or proportions to suit your
creativity. Save your svg file as my_robot.svg in your docs/
directory and show a png screenshot of your rendered drawing in
your write-up. Explain what you were trying to do with cubeman in
words.

Task 4 (10 pts)

Explain barycentric coordinates in your own words and use an
image to aid you in your explanation. One idea is to use a svg file
that plots a single triangle with one red, one green, and one blue
vertex, which should produce a smoothly blended color triangle.
Show a png screenshot of svg/basic/test7.svg with default viewing
parameters and sample rate 1. If you make any additional images
with color gradients, include them.

Task 5 (15 pts)

Explain pixel sampling in your own words and describe how you
implemented it to perform texture mapping. Briefly discuss the two
different pixel sampling methods, nearest and bilinear.
Check out the svg files in the svg/texmap/ directory. Use the pixel
inspector to find a good example of where bilinear sampling
clearly defeats nearest sampling. Show and compare four png

screenshots using nearest sampling at 1 sample per pixel, nearest
sampling at 16 samples per pixel, bilinear sampling at 1 sample
per pixel, and bilinear sampling at 16 samples per pixel.
Comment on the relative differences. Discuss when there will be a
large difference between the two methods and why.

Task 6 (25 pts)

Explain level sampling in your own words and describe how you
implemented it for texture mapping.
You can now adjust your sampling technique by selecting pixel
sampling, level sampling, or the number of samples per pixel.
Describe the tradeoffs between speed, memory usage, and
antialiasing power between the three various techniques.
Using a png file you find yourself, show us four versions of the
image, using the combinations of L_ZERO and P_NEAREST , L_ZERO
and P_LINEAR , L_NEAREST and P_NEAREST , as well as L_NEAREST
and P_LINEAR .

To use your own png, make a copy of one of the existing svg
files in svg/texmap/ (or create your own modelled after one of
the provided svg files). Then, near the top of the file, change
the texture filename to point to your own png. From there, you
can run ./draw and pass in that svg file to render it and then
save a screenshot of your results.
Note: Choose a png that showcases the different sampling
effects well. You may also want to zoom in/out, use the pixel
inspector, etc. to demonstrate the differences.

Extra credit: If you implemented any extra filtering methods,
describe them and show comparisons between your results with
the other above methods.

(Optional) Potential Extra Credit

Save your best svg file as competition.svg in your docs/ directory,
and show us a 800x800 png screenshot of it in your write-up!
Explain how you did it. If you wrote a script to generate procedural
svg files, include it in your submission in the src/ directory and
briefly explain how it works.

Website tips and advice

Please include a link to your webpage at the top of your writeup
Note that only one webpage is needed for both partners
Be sure to include and turn in all of the other files (such as
images) that are linked in your report!
Use only relative paths to files, such as "./images/image.jpg"
Do NOT use absolute paths, such as
 "/Users/student/Desktop/image.jpg"

Pay close attention to your filename extensions. Remember that
on UNIX systems (such as the instructional machines),
capitalization matters. .png != .jpeg != .jpg != .JPG
Be sure to adjust the permissions on your files so that they are
world readable. For more information on this please see this
tutorial.
Start assembling your webpage early to make sure you have a
handle on how to edit the HTML code to insert images and format
sections. (Or you can use Markdown)

Feedback Form

Please fill out this feedback form if you would like to share any
feedback on this homework, the homework parties, or the course in
general.

http://www.grymoire.com/Unix/Permissions.html
https://forms.gle/gTS1Au3FXPH4VcP6A

