
SQL II

R & G - Chapter 5

Slide Deck Title

SQL DML 1:
Basic Single-Table Queries
• SELECT [DISTINCT] <column expression list>

FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]
[LIMIT <integer>];

Slide Deck Title

Conceptual SQL Evaluation

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualificati

Slide Deck Title

Putting it all together
• SELECT S.dept, AVG(S.gpa), COUNT(*)

FROM Students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) >= 2
ORDER BY S.dept;

Slide Deck Title

Content Break

Slide Deck Title

Join Queries
• SELECT [DISTINCT] <column expression list>

FROM <table1 [AS t1], ... , tableN [AS tn]>
[WHERE <predicate>]
[GROUP BY <column list>[HAVING <predicate>]]
[ORDER BY <column list>];

Slide Deck Title

Conceptual SQL Evaluation, cont

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualificati

Slide Deck Title

Cross (Cartesian) Product
• All pairs of tuples, concatenated

sid sname rating age
1 Popeye 10 22
2 OliveOyl 11 39
3 Garfield 1 27

4 Bob 5 19

Sailors
sid bid day
1 102 9/12

2 102 9/13

1 101 10/01

Reserves

sid sname rating age sid bid day
1 Popeye 10 22 1 102 9/12
1 Popeye 10 22 2 102 9/13
1 Popeye 10 22 1 101 10/01
2 OliveOyl 11 39 1 102 9/12

… … … … … … ...

Slide Deck Title

Find sailors who’ve reserved
a boat SELECT S.sid

FROM Sailors AS S, Reserves AS R
WHERE S.sid=R.sid

sid sname rating age
1 Popeye 10 22
2 OliveOyl 11 39
3 Garfield 1 27

4 Bob 5 19

sid bid day
1 102 9/12
2 102 9/13
1 101 10/01

sid sname rating age sid bid day
1 Popeye 10 22 1 102 9/12
1 Popeye 10 22 2 102 9/13
1 Popeye 10 22 1 101 10/01
2 OliveOyl 11 39 1 102 9/12

… … … … … … ...

Slide Deck Title

Find sailors who’ve reserved
a boat cont SELECT S.sid

FROM Sailors AS S, Reserves AS R
WHERE S.sid=R.sid

sid sname rating age
1 Popeye 10 22
2 OliveOyl 11 39
3 Garfield 1 27

4 Bob 5 19

sid bid day
1 102 9/12
2 102 9/13
1 101 10/01

sid sname bid
1 Popeye 102
1 Popeye 101
2 OliveOyl 102

Slide Deck Title

Column Names and Table Aliases

SELECT Sailors.sid, sname, bid
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid

SELECT S.sid, sname, bid
FROM Sailors AS S, Reserves AS R
WHERE S.sid = R.sid

Slide Deck Title

More Aliases
SELECT x.sname, x.age,

y.sname AS sname2,
y.age AS age2

FROM Sailors AS x, Sailors AS y
WHERE x.age > y.age

• Table aliases in the FROM clause
• Needed when the same table used multiple times (“self-

join”)
• Column aliases in the SELECT clause

sname age sname2 age2
Popeye 22 Bob 19
OliveOyl 39 Popeye 22
OliveOyl 39 Garfield 27
OliveOyl 39 Bob 19
Garfield 27 Popeye 22
Garfield 27 Bob 19

Slide Deck Title

Arithmetic Expressions
• SELECT S.age, S.age-5 AS age1, 2*S.age AS age2

FROM Sailors AS S
WHERE S.sname = 'Popeye’

• SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors AS S1, Sailors AS S2
WHERE 2*S1.rating = S2.rating - 1

Slide Deck Title

SQL Calculator!
SELECT

log(1000) as three,
exp(ln(2)) as two,
cos(0) as one,
ln(2*3) = ln(2) + ln(3) as sanity;

Slide Deck Title

String Comparisons
• Old School SQL

SELECT S.sname
FROM Sailors S
WHERE S.sname LIKE 'B_%’

• Standard Regular Expressions
SELECT S.sname
FROM Sailors S
WHERE S.sname ~ ‘^B.*’

Slide Deck Title

Content Break 2

Slide Deck Title

Combining Predicates
• Subtle connections between:

– Boolean logic in WHERE (i.e., AND, OR)
– Traditional Set operations (i.e. INTERSECT,

UNION)
• Let’s see some examples…

Slide Deck Title

Sid’s of sailors who reserved a red OR a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND

(B.color='red' OR B.color='green')

Slide Deck Title

Sid’s of sailors who reserved a red OR a green boat Pt 2

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND

(B.color='red’ OR B.color='green')

VS…

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'

UNION ALL

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'

Slide Deck Title

Sid’s of sailors who reserved a red OR a green boat Pt 3

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND

(B.color='red’ AND B.color='green')

VS…

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'

INTERSECT

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'

Slide Deck Title

Find sailors who have not reserved a boat

SELECT S.sid
FROM Sailors S

EXCEPT

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Slide Deck Title

Content Break 3

Slide Deck Title

Set Semantics
• Set: a collection of distinct elements
• Standard ways of manipulating/combining sets
• Union
• Intersect
• Except

• Treat tuples within a relation as
elements of a set

Default: Set Semantics

R = {A, A, A, A, B, B, C, D}
S = {A, A, B, B, B, C, E}

• UNION
{A, B, C, D, E}

• INTERSECT
{A, B, C}

• EXCEPT
{D}

Note: Think of each letter as being a tuple in
relation.

ex:
A: (Jim, 18, English, 4.0)
B: (Marcela , 20, CS, 3.8)
C: (Gail, 19, Statistics, 3.74)
D: (Goddard, 20, Math, 3.8

Note: R and S are relations. They are not sets,
since they have duplicates.

“ALL”: Multiset Semantics
R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

“UNION ALL”: Multiset Semantics

R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

• UNION ALL: sum of cardinalities
{A(4+2), B(2+3), C(1+1), D(1+0), E(0+1)}
= {A, A, A, A, A, A, B, B, B, B, B, C, C, D, E}

“INTERSECT ALL”: Multiset Semantics

R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

• INTERSECT ALL: min of cardinalities
{A(min(4,2)), B(min(2,3)), C(min(1,1)),
D(min(1,0)), E(min(0,1))}
= {A, A, B, B, C}

“EXCEPT ALL”: Multiset Semantics

R = {A, A, A, A, B, B, C, D} = {A(4), B(2), C(1), D(1)}
S = {A, A, B, B, B, C, E} = {A(2), B(3), C(1), E(1)}

• EXCEPT ALL: difference of cardinalities
{A(4-2), B(2-3), C(1-1), D(1-0), E(0-1)}
= {A, A, D, }

Content Break 4

Nested Queries: IN

• Names of sailors who’ve reserved boat #102:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=102)

subquery

Nested Queries: NOT IN

• Names of sailors who’ve not reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

Nested Queries: EXISTS

• This is a bit odd, but it is legal:

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

Nested Queries with Correlation

• Names of sailors who’ve reserved boat #102:

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=102 AND S.sid=R.sid)

• Correlated subquery is recomputed for each Sailors tuple.

More on Set-Comparison Operators

• We’ve seen: IN, EXISTS
• Can also have: NOT IN, NOT EXISTS
• Other forms: op ANY, op ALL

Find sailors whose rating is greater than that of some sailor
called Popeye:

SELECT *
FROM Sailors S
WHERE S.rating > ANY

(SELECT S2.rating
FROM Sailors S2
WHERE S2.sname='Popeye')

A Tough One: “Division”

• Relational Division: “Find sailors who’ve reserved all boats.”
Said differently: “sailors with no counterexample missing boats”

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid
AND R.sid=S.sid))

Content Break 5

ARGMAX? Pt 1

• The sailor with the highest rating
• Correct or Incorrect?

SELECT MAX(S.rating)
FROM Sailors S;

VS

SELECT S.*, MAX(S.rating)
FROM Sailors S;

ARGMAX? Pt 2

• The sailor with the highest rating• Correct or Incorrect? Same or different?
SELECT *
FROM Sailors S
WHERE S.rating >= ALL
(SELECT S2.rating
FROM Sailors S2)

VS
SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)
FROM Sailors S2)

ARGMAX? Pt 3

• The sailor with the highest rating
• Correct or Incorrect? Same or different?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
(SELECT S2.rating
FROM Sailors S2)

VS
SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

Content Break 6

“Inner” Joins: Another Syntax

SELECT s.*, r.bid
FROM Sailors s, Reserves r
WHERE s.sid = r.sid
AND ...

SELECT s.*, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid
WHERE ...

Join Variants

SELECT <column expression list>
FROM table_name
[INNER | NATURAL
| {LEFT |RIGHT | FULL } {OUTER}] JOIN
table_name
ON <qualification_list>

WHERE …

• INNER is default
• Inner join what we’ve learned so far

– Same thing, just with different syntax.

Inner/Natural Joins

SELECT s.sid, s.sname, r.bid
FROM Sailors s, Reserves r
WHERE s.sid = r.sid
AND s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid
WHERE s.age > 20;

SELECT s.sid, s.sname, r.bid
FROM Sailors s NATURAL JOIN Reserves r
WHERE s.age > 20;

• ALL 3 ARE EQUIVALENT!
• “NATURAL” means equi-join for pairs of attributes with the same name

Left Outer Join

• Returns all matched rows, and preserves all unmatched
rows from the table on the left of the join clause
– (use nulls in fields of non-matching tuples)

SELECT s.sid, s.sname, r.bid
FROM Sailors2 s LEFT OUTER JOIN Reserves2 r
ON s.sid = r.sid;

Returns all sailors & bid for boat in any
of their reservations

Note: no match for s.sid? r.bid IS NULL!

Right Outer Join

• Returns all matched rows, and preserves all unmatched
rows from the table on the right of the join clause
– (use nulls in fields of non-matching tuples)

SELECT r.sid, b.bid, b.bname
FROM Reserves2 r RIGHT OUTER JOIN Boats2 b
ON r.bid = b.bid

Returns all boats and sid for any sailor
associated with the reservation.

Note: no match for b.bid? r.sid IS NULL!

Full Outer Join

• Returns all (matched or unmatched) rows from the tables
on both sides of the join clause

SELECT r.sid, b.bid, b.bname
FROM Reserves2 r FULL OUTER JOIN Boats2 b
ON r.bid = b.bid

• Returns all boats & all information on reservations
• No match for r.bid?

– b.bid IS NULL AND b.bname IS NULL!
• No match for b.bid?

– r.sid IS NULL!

Content Break 7

Views: Named Queries

CREATE VIEW view_name
AS select_statement

• Makes development simpler• Often used for security• Not “materialized”

CREATE VIEW Redcount

AS SELECT B.bid, COUNT(*) AS scount
FROM Boats2 B, Reserves2 R
WHERE R.bid=B.bid AND B.color='red'
GROUP BY B.bid

Views Instead of Relations in Queries

CREATE VIEW Redcount
AS SELECT B.bid, COUNT(*) AS scount

FROM Boats2 B, Reserves2 R
WHERE R.bid=B.bid AND B.color='red'
GROUP BY B.bid;

SELECT * from redcount;

SELECT bname, scount
FROM Redcount R, Boats2 B
WHERE R.bid=B.bid
AND scount < 10;

Subqueries in FROM

Like a “view on the fly”!
SELECT bname, scount
FROM Boats2 B,
(SELECT B.bid, COUNT (*)

FROM Boats2 B, Reserves2 R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid) AS Reds(bid, scount)

WHERE Reds.bid=B.bid
AND scount < 10

WITH a.k.a. common table expression (CTE)

Another “view on the fly” syntax:
WITH Reds(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats2 B, Reserves2 R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid)

SELECT bname, scount
FROM Boats2 B, Reds
WHERE Reds.bid=B.bid
AND scount < 10

Can have many queries in WITH

Another “view on the fly” syntax:
WITH Reds(bid, scount) AS
(SELECT B.bid, COUNT (*)
FROM Boats2 B, Reserves2 R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid),
UnpopularReds AS
(SELECT bname, scount
FROM Boats2 B, Reds
WHERE Reds.bid=B.bid
AND scount < 10)

SELECT * FROM UnpopularReds;

ARGMAX GROUP BY?

• The sailor with the highest rating per age

WITH maxratings(age, maxrating) AS
(SELECT age, max(rating)
FROM Sailors
GROUP BY age)

SELECT S.*
FROM Sailors S, maxratings m
WHERE S.age = m.age
AND S.rating = m.maxrating;

Content Break 8

Brief Detour: Null Values

• Field values are sometimes unknown
– SQL provides a special value NULL for such situations.
– Every data type can be NULL

• The presence of null complicates many issues. E.g.:
– Selection predicates (WHERE)
– Aggregation

• But NULLs comes naturally from Outer joins

NULL in the WHERE clause

• Consider a tuple where rating IS NULL.

INSERT INTO sailors VALUES
(11, 'Jack Sparrow', NULL, 35);

SELECT * FROM sailors
WHERE rating > 8;

Is Jack Sparrow in the output?

NULL in comparators

• Rule: (x op NULL) evaluates to … NULL!
SELECT 100 = NULL;
SELECT 100 < NULL;
SELECT 100 >= NULL;

Explicit NULL Checks

SELECT * FROM sailors WHERE rating IS NULL;

SELECT * FROM sailors WHERE rating IS NOT NULL;

NULL at top of WHERE

• Rule: Do not output a tuple WHERE NULL

SELECT * FROM sailors;
SELECT * FROM sailors WHERE rating > 8;
SELECT * FROM sailors WHERE rating <= 8;

NULL in Boolean Logic

Three-valued logic:

SELECT * FROM sailors WHERE rating > 8 AND TRUE;

SELECT * FROM sailors WHERE rating > 8 OR TRUE;

SELECT * FROM sailors WHERE NOT (rating > 8);

General rule: NULL **column values** are ignored
by aggregate functions

AND T F N

T T F

F F F

N

OR T F N

T T T

F T F

N

NOT T F N

F T

NULL in Boolean Logic

Three-valued logic:

SELECT * FROM sailors WHERE rating > 8 AND TRUE;

SELECT * FROM sailors WHERE rating > 8 OR TRUE;

SELECT * FROM sailors WHERE NOT (rating > 8);

General rule: NULL **column values** are ignored
by aggregate functions

AND T F N

T T F N

F F F F

N N F N

OR T F N

T T T T

F T F N

N T N N

NOT T F N

F T N

NULL and Aggregation

SELECT count(*) FROM sailors;

SELECT count(rating) FROM sailors;

SELECT sum(rating) FROM sailors;

SELECT avg(rating) FROM sailors;

General rule: NULL **column values**
are ignored by aggregate functions

NULLs: Summary

• NULL op NULL is NULL
• WHERE NULL: do not send to output
• Boolean connectives: 3-valued logic
• Aggregates ignore NULL-valued inputs

Content Break 9

Testing SQL Queries

• SQL Fiddle pages we provide in this class will typically
help you answer the questions in the worksheets and
vitamins.

• But in real life:
– not every database instance will reveal every bug in your

query.
• Eg: database instance without any rows in it!

– Need to debug your queries
– reasoning about them carefully
– constructing test data.

Tips for Generating Test Data

• Generate random data
• e.g. using a service like mockaroo.com

• Try to construct data that could check for the following potential errors:
• Incorrect output schema
• Output may be missing rows from the correct answer (false negatives)
• Output may contain incorrect rows (false positives)
• Output may have the wrong number of duplicates.
• Output may not be ordered properly.

Content Break 10

Summary

• You’ve now seen SQL—you are armed.
• A declarative language

– Somebody has to translate to algorithms though…
– The RDBMS implementor ... i.e. you!

Summary Cont

• The data structures and algorithms that make SQL possible also power:
– NoSQL, data mining, scalable ML, network routing…
– A toolbox for scalable computing!
– That fun begins next week

• We skirted questions of good database (schema) design
– a topic we’ll consider in greater depth later

