
Discussion 9
DB Design

Announcements

Vitamin 9 (DB Design) due Monday, March 25 at 11:59pm

Midterm 2 - Thursday 4/4 from 7PM to 9PM

Fill out this form for MT 2 conflicts

https://docs.google.com/forms/d/e/1FAIpQLSfYSavBBd-QMdaUDYIDT69U39PJVgax-c8m5ItcZeM4f-i-Lg/viewform?usp=sf_link

ER Diagrams

ER Intro

● Today we’ll focus on how to design DB schemas rather than how
dbs are actually built

● Production DBs have a lot of tables with complicated relationships

● ER diagrams help design these schemas and document them

ER Diagrams: Entities

● Entities are real-world objects described with attributes
● An entity set is a collection of the same type of entities

○ All entities in an entity set have the same attributes
○ All entities set have a key (underlined)
○ Box around entity set, ellipse around attributes

Employeesssn

name
lot

ER Diagrams: Relationships
● A relationship is an association between 2+ entities

○ May be further described with attributes
● A relationship set is a collection of the same type of

relationships (represented with a diamond)

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

● Key constraint
○ at most one

● Participation constraint
○ at least one

● Key constraint with total participation
○ exactly one

● Non-key partial participation
○ 0 or more (no restrictions)

ER Diagrams: Constraints

● participation constraint: must be in relationship at least
once - every employee must work in a department

● key constraint: at most once - every department may be
managed by at most one manager

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● The Works In relationship is a many-to-many relationship
○ An employee may work in many departments
○ A department may have many employees

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● The Manages relationship is 1-to-many (or many-to-1)
○ 1-to-many: An employee may manage many depts
○ many-to-1: A dept may be managed by at most 1 employee

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● The Manages relationship has optional participation for
employees
○ An employee does not have to manage a department

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● What if we change this arrow to be bolded instead?
● The Manages relationship now has a key constraint with

total participation for Department
○ A department must be managed by exactly one manager

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● What if we change these lines to arrows instead?
● The Works in relationship is now a 1-to-1 relationship

○ A department can have at most one employee
○ An employee can work in at most one department

ER Diagrams: Constraints

Employees

ssn

name
lot

Department

did

dname
budget

Works in

since

Manages

since

● A weak entity is an entity that can be identified uniquely only
with the key of another entity
○ Weak entities have a partial key (dashed underline), which

identifies the entity when combined with owner entity’s key

○ Must be a one-to-many relationship (1 owner entity, many
weak entities), with total participation

ER Diagrams: Weak Entities

● A weak entity is an entity that can be identified uniquely
only with the key of another entity (owner entity)

ER Diagrams: Weak Entities

Employees

ssn

name
lot

Dependent

pname
age

Policy

cost

Worksheet: ER Diagrams

We want to store sports teams and their players in our database. Draw an
ER diagram corresponding to data given below:

● Every Team in our database will have a unique team_name and a stadium where they
play their games.

● Each Coach has a name.
● Each Player will have a unique player_id, a name and an average score.
● Our database will contain who Plays_For which team and also the “position” that the

player plays in. We also need to store who Captains a team, and who Coaches a team.
● Every Team needs players, and needs exactly one captain.
● Each Player can be on at most one team, but may currently be a free agent and not on

any team
● Each team needs coaches and may have many.
● A Coach is uniquely identified by which team they coach.

Worksheet: ER Diagram

Worksheet: ER Diagram

Functional Dependencies

● In some data sets, if you already know a set of columns,
you can use that information to infer the other columns

● Example: imagine that you have birthday and age
columns in a table. Birthday uniquely determines age

● These relationships are called functional dependencies.
We want to use them to eliminate redundancy

FDs Intro

Students have merit-based pay; their Rating determines their Wage. Wage depends on Rating.

SID (S) Name (N) Rating (R) Wage (W) Hours (H)

0001 Terri 8 15 40

0002 Garrett 5 10 30

0003 Lorene 5 10 30

0004 Heather 8 15 32

0005 Marjorie 2 7 30

0006 Victor 8 15 40

...

Functional Dependencies

Problem 1: Redundancy

SID (S) Name (N) Rating (R) Wage (W) Hours (H)

0001 Terri 8 15 40

0002 Garrett 5 10 30

0003 Lorene 5 10 30

0004 Heather 8 15 32

0005 Marjorie 2 7 30

0006 Victor 8 15 40

...

Functional Dependencies

Problem 2: Insert/delete/update anomalies

SID (S) Name (N) Rating (R) Wage (W) Hours (H)

0001 Terri 8 15 40

0002 Garrett 5 10 30

0003 Lorene 5 10 30

0004 Heather 8 15 32

0005 Marjorie 2 7 30

0006 Victor 8 15 40

...

Functional Dependencies

● Update anomaly: if we change a wage for one person, we
have to change it for everyone

● Insert anomaly: if we want to insert a person with rating 10,
we have to figure out the wage associated with it

● Delete anomaly: if we delete all employees with rating 8, we
no longer know the wage value corresponding to rating 8
(what if we add a rating 8 person later?)

Functional Dependencies: Anomalies

Solution: Move rating and wage information to a separate table
SID (S) Name (N) Rating (R) Hours (H)

0001 Terri 8 40

0002 Garrett 5 30

0003 Lorene 5 30

0004 Heather 8 32

0005 Marjorie 2 30

0006 Victor 8 40

...

Rating (R) Wage (W)

8 15

2 7

5 10

R → W

Functional Dependencies: Schema Decomposition

● functional dependency: X → Y (X determines Y)
○ X, Y are sets of attributes
○ if attributes in X match, then attributes in Y must match

● superkey: X is a superkey of R if X → [all attributes of R]
● candidate key: a set of keys that determines all columns in a

relation and no columns that can be removed and still be a
superkey

Functional Dependencies

● Armstrong’s Axioms
○ Reflexivity: If Y ⊆ X, then X → Y
○ Augmentation: If X → Y, then XZ → YZ

■ XZ → YZ does NOT imply X → Y
○ Transitivity: If X → Y and Y → Z, then X → Z

● Union: If X → Y and X → Z, then X → YZ
● Decomposition: If X → YZ, then X → Y and X → Z

○ XZ → Y does NOT imply X → Y and Z → Y

Functional Dependencies: Inference Rules

● The closure of a set of FDs F is F+

○ set of all FDs implied by F
○ hard to find, exponential in # of attributes, so

we use attribute closure instead

● The attribute closure of an attribute X given a set
of FDs is X+

○ set of all attributes A such that X → A is in F+
(all attributes that can be determined by just X)

Functional Dependencies: Closure

● The attribute closure of an attribute X given a set of FDs is X+

○ set of all attributes A such that X → A is in F+ (all attributes
that can be determined by just X)

○ Algorithm:
■ Closure = X;
■ Repeat until there is no change

● If there is an FD U → V in F s.t. U ⊆ closure,
○ set closure = closure ∪ V

Functional Dependencies: Closure

Worksheet: FDs

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

Worksheet: FD #1

x y z

1 2 0

1 2 1

1 3 0

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

None.

Worksheet: FD #1

x y z

1 2 0

1 2 1

1 3 0

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

Worksheet: FD #1

x y z

1 2 1

1 3 1

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

XY → YZ.

Worksheet: FD #1

x y z

1 2 1

1 3 1

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

Worksheet: FD #1

x y z

1 3 1

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

X → Y, XY → YZ.

Worksheet: FD #1

x y z

1 3 1

2 3 0

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

Worksheet: FD #1

x y z

1 3 1

Consider a relation R(x, y, z) and the functional dependencies
X → Y, XY → YZ, and Y → X where X = {x}, Y = {y}, and Z = {z}.
For each of the following relations, indicate which functional
dependencies it might satisfy.

X → Y, XY → YZ, Y → X.

Worksheet: FD #1

x y z

1 3 1

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

A+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

A+

A → B (AB)
AB → AC (ABC)
BC → BD (ABCD)
ABCD

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

B+, C+, D+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

B+, C+, D+

B, C, D

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

AB+, AC+, AD+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

AB+, AC+, AD+

ABCD

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BC+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BC+

BC → BD (BCD)

BCD

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BD+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BD+

BD

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

CD+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

CD+

CD

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BCD+

Worksheet: FD #2

Consider the set F = {A → B, AB → AC, BC → BD, DA → C} of
functional dependencies. Compute the following attribute
closures.

BCD+

BCD

Worksheet: FD #2

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

A

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

A

A+ = ABCD

candidate key because A+ is a minimal set of keys to cover
all symbols in F

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

B, C, D

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

B, C, D

B+ = B, C+ = C, D+ = D

neither because none of them cover all symbols in F

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

AB, AC, AD

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

AB, AC, AD

AB+ = AC+ = AD+ = ABCD

superkeys because A is a candidate key, so any more
symbols added to A is not the minimal set of symbols to
cover all symbols in F and thus, a superkey

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

BC

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

BC

BC+ = BCD

neither

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

BD, CD, BCD

Worksheet: FD #3

Consider again the set F = {A → B, AB → AC, BC → BD, DA → C}.
Indicate whether the following sets of attributes are candidate
keys, superkeys (but not candidate keys), or neither.

BD, CD, BCD

BD+ = BD, CD+ = CD, BCD+ = BCD

neither

Worksheet: FD #3

Boyce-Codd Normal Form (BCNF)

● R is in BCNF if:
○ for every FD X → A that holds over R,

■ either A ⊆ X OR X is a superkey
● No redundancy in BCNF

○ every field of every tuple contains some information that
cannot be inferred from the FDs

Normalization: Boyce-Codd Normal Form (BCNF)

● We can decompose a relation R that is not in BCNF into
multiple relations that are in BCNF

● For each FD X → Y in F+:
○ If X → Y violates BCNF:

■ Decompose R into (R - X+) U X and X+

● Final result depends on order of decomposition

Normalization: Boyce-Codd Normal Form (BCNF)

BCNF Decomposition Example

Decompose R = ABCDE into BCNF, given the functional
dependency set:

F = {A → E, C → E, B → CD, B → A}.

BCNF Decomposition Example

Decompose R = ABCDE into BCNF, given the functional
dependency set:

F = {A → E, C → E, B → CD, B → A}.

Relations: {ABCDE} → {AE, ABCD}

● A is not a superkey. A+ = AE
● A & E are in a relation together, so we split A+ and

(R - A+) U A = ABCD out from the offending relation.

BCNF Decomposition Example

Decompose R = ABCDE into BCNF, given the functional
dependency set:

F = {A → E, C → E, B → CD, B → A}.

Relations: {AE, ABCD}

● C & E are not both in a relation, so nothing happens.

BCNF Decomposition Example

Decompose R = ABCDE into BCNF, given the functional
dependency set:

F = {A → E, C → E, B → CD, B → A}.

Relations: {AE, ABCD}

● B is a superkey for {ABCD}. B+= ABCDE (from B → CD, C → E,
B → A)

● B, C, & D are in a relation together, because B is a superkey,
we don’t split ABCD.

BCNF Decomposition Example

Decompose R = ABCDE into BCNF, given the functional
dependency set:

F = {A → E, C → E, B → CD, B → A}.

Relations: {AE, ABCD}

● B is a superkey for {ABCD}.
● B & A are in a relation together, because B is a superkey,

we don’t split ABCD.

Decomposition Problem: Lossiness

● lossiness: we may not be able to reconstruct the original
relation
○ doesn’t actually lose data, it generates bad data

● Decompose R into X and Y. Decomposition is lossless iff f+
contains:
○ X INTERSECT Y → X or
○ X INTERSECT Y → Y

● BCNF is always lossless (good)

Decomposition Lossiness Example

Given R = ABC with F = B→C, if we decompose it into two
relations AB and AC, and then join AB and AC on A, we aren’t
going to have the same rows as the original relation.

A B C

a1 b1 c1

a1 b2 c2

A B

a1 b1

a1 b2

A C

a1 c1

a1 c2

A B C

a1 b1 c1

a1 b1 c2

a1 b2 c1

a1 b2 c2

X ⨝ Y

R X Y

Dependency Preserving Decompositions

● dependency preserving: if we can enforce F+ individually on each
table and this in turn enforces the FDs on the entire database

● Formalism: dependency preserving iff (Fx U Fy)
+ = F+ where Fx are the

FDs we can enforce just in relation X
○ For example: imagine we decomposed R = ABC into X=AB, Y=BC.

If F: {A → B, A → C} this is not dependency preserving because we
can’t enforce the dependency A → C on either relation

● BCNF is not necessarily dependency preserving

Worksheet: Normal Forms

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Relations: {ABCDEFG} → {ABCDEF, ABG}
● AB+ = ABCDEF, not a superkey for {ABCDEFG}
● (R - AB+) U AB = ABG

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Relations: {ABCDEF, ABG} → {ABCD, CEF, ABG}
● C+= CEF, not a superkey for {ABCDEF}
● (ABCDEF - C+) U C = ABCD

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Relations: {ABCD, CEF, ABG} → {ABCD, CEF, AG, BG}
● G+ = GAF, not a superkey for {ABG}
● (ABG - G+) U G = BG

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Relations: {ABCD, CEF, AG, BG}
● There aren’t any relations with G&F both in them

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Relations: {ABCD, CEF, AG, BG}
● CE → F does not violate BCNF since CE is a superkey for

CEF

Worksheet: Normal Forms #1

Decompose R = ABCDEFG into BCNF, given the functional
dependency set:
F = {AB → CD, C → EF, G → A, G → F, CE → F}.

Is the above decomposition lossless?

Yes, because BCNF is always lossless.

Worksheet (3.2): Normal Forms

Worksheet (3.3): Normal Forms

Does the above decomposition preserve dependencies?
Why/why not?

No, G → F is not represented in the closure of the union of
each subrelation’s dependencies.

Attendance Link

https://cs186berkeley.net/attendance

https://cs186berkeley.net/attendance

