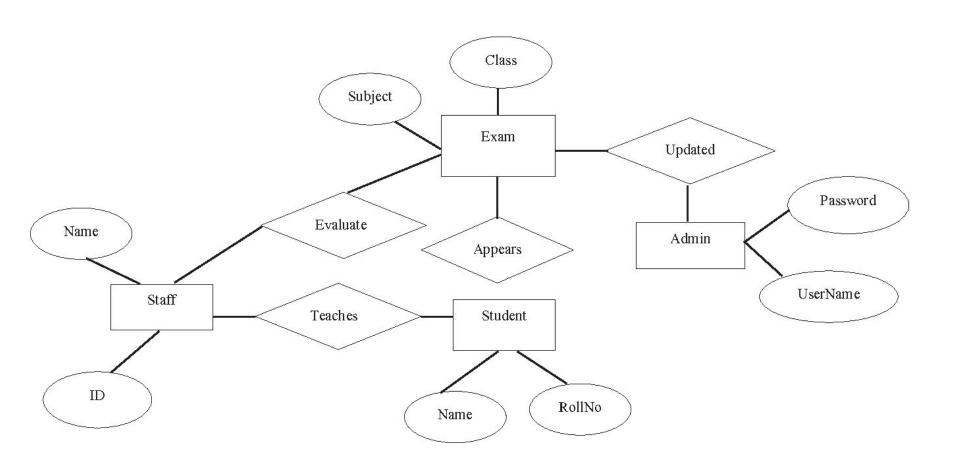
Discussion 9

DB Design

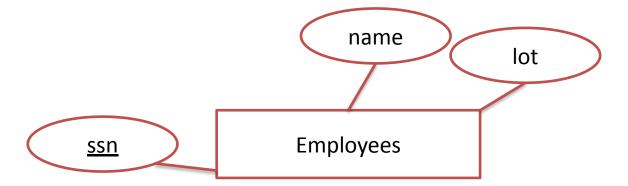
Announcements

Vitamin 9 (DB Design) due Monday, March 25 at 11:59pm

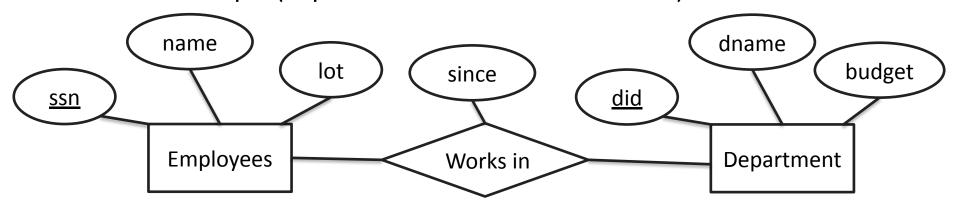

Midterm 2 - Thursday 4/4 from 7PM to 9PM

Fill out this form for MT 2 conflicts

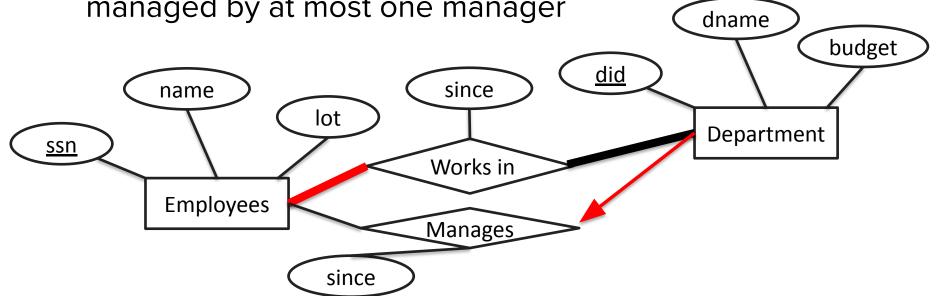
ER Diagrams


ER Intro

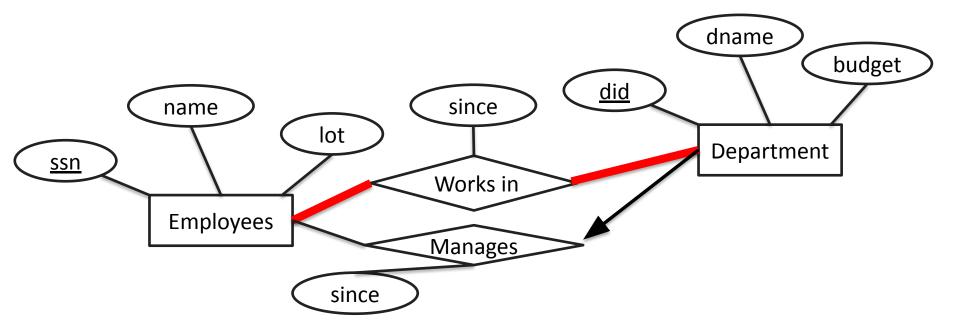
- Today we'll focus on how to design DB schemas rather than how dbs are actually built
- Production DBs have a lot of tables with complicated relationships
- ER diagrams help design these schemas and document them


ER Diagrams: Entities

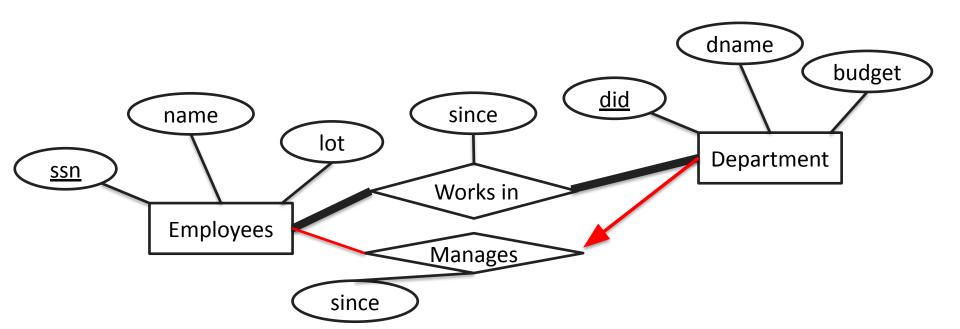
- Entities are real-world objects described with attributes
- An entity set is a collection of the same type of entities
 - All entities in an entity set have the same attributes
 - All entities set have a <u>key</u> (underlined)
 - Box around entity set, ellipse around attributes

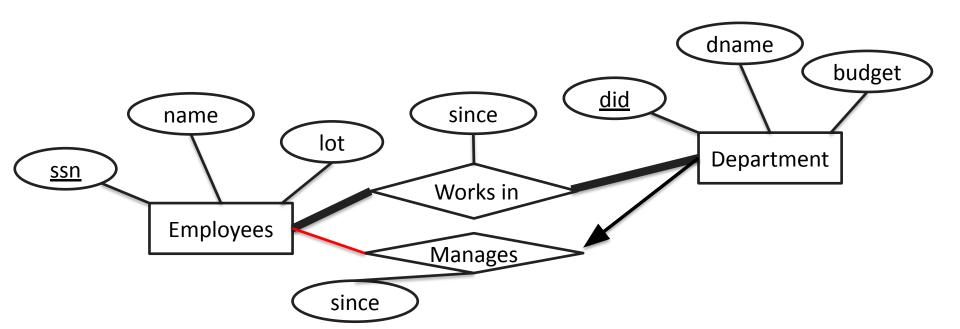

ER Diagrams: Relationships

- A relationship is an association between 2+ entities
 - May be further described with attributes
- A relationship set is a collection of the same type of relationships (represented with a diamond)

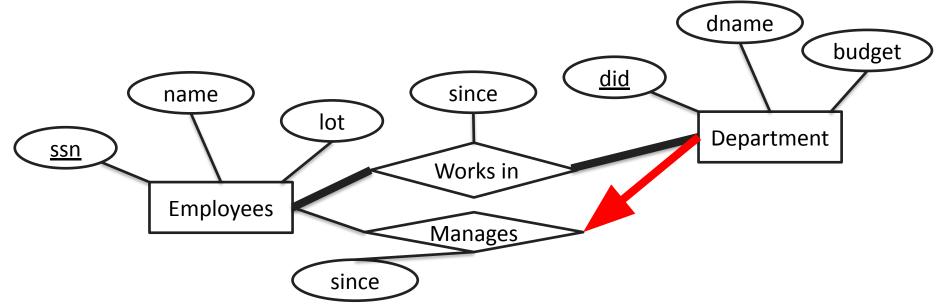


- Key constraint
 - o at most one
- Participation constraint
 - at least one
- Key constraint with total participation
 - exactly one
- Non-key partial participation
 - 0 or more (no restrictions)

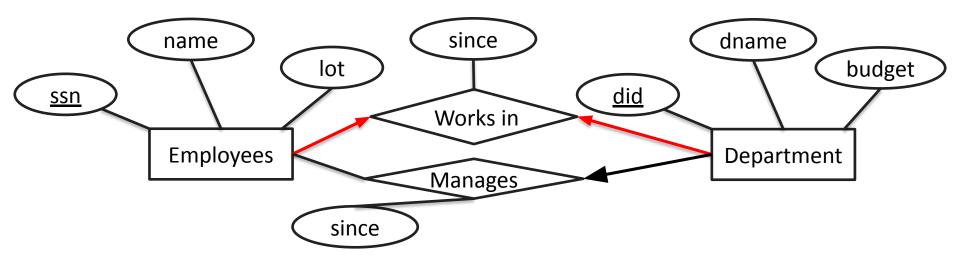

- participation constraint: must be in relationship at least once - every employee must work in a department
- key constraint: at most once every department may be managed by at most one manager


- The Works In relationship is a many-to-many relationship
 - An employee may work in many departments
 - A department may have many employees

- The Manages relationship is 1-to-many (or many-to-1)
 - 1-to-many: An employee may manage many depts
 - many-to-1: A dept may be managed by at most 1 employee



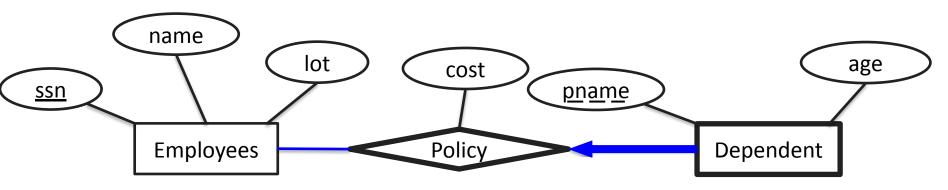
- The Manages relationship has optional participation for employees
 - An employee does not have to manage a department



- What if we change this arrow to be bolded instead?
- The Manages relationship now has a key constraint with total participation for Department

A department must be managed by exactly one manager

- What if we change these lines to arrows instead?
- The Works in relationship is now a 1-to-1 relationship
 - A department can have at most one employee
 - An employee can work in at most one department

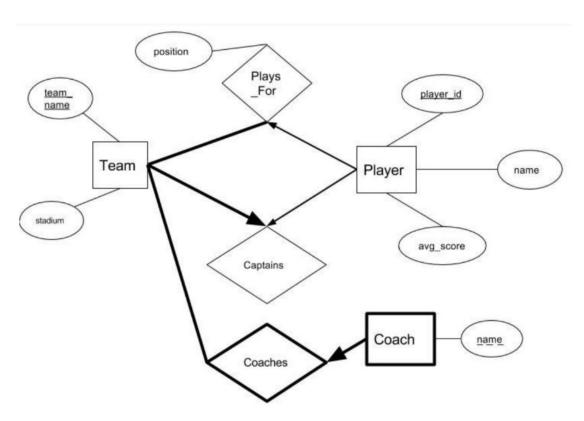

ER Diagrams: Weak Entities

- A weak entity is an entity that can be identified uniquely only with the key of another entity
 - Weak entities have a partial key (dashed underline), which identifies the entity when combined with owner entity's key

 Must be a one-to-many relationship (1 owner entity, many weak entities), with total participation

ER Diagrams: Weak Entities

 A weak entity is an entity that can be identified uniquely only with the key of another entity (owner entity)


Worksheet: ER Diagrams

Worksheet: ER Diagram

We want to store sports teams and their players in our database. Draw an ER diagram corresponding to data given below:

- Every Team in our database will have a unique team_name and a stadium where they
 play their games.
- Each Coach has a name.
- Each Player will have a unique player_id, a name and an average score.
- Our database will contain who Plays_For which team and also the "position" that the
 player plays in. We also need to store who Captains a team, and who Coaches a team.
- Every Team needs players, and needs exactly one captain.
- Each Player can be on at most one team, but may currently be a free agent and not on any team
- Each team needs coaches and may have many.
- A Coach is uniquely identified by which team they coach.

Worksheet: ER Diagram

FDs Intro

In some data sets, if you already know a set of columns,
 you can use that information to infer the other columns

 Example: imagine that you have birthday and age columns in a table. Birthday uniquely determines age

These relationships are called functional dependencies.
 We want to use them to eliminate redundancy

Students have merit-based pay; their Rating determines their Wage. Wage depends on Rating.

SID (S)	Name (N)	Rating (R)	Wage (W)	Hours (H)
0001	Terri	8	15	40
0002	Garrett	5	10	30
0003	Lorene	5	10	30
0004	Heather	8	15	32
0005	Marjorie	2	7	30
0006	Victor	8	15	40

Problem 1: Redundancy

SID (S)	Name (N)	Rating (R)	Wage (W)	Hours (H)
0001	Terri	8	15	40
0002	Garrett	5	10	30
0003	Lorene	5	10	30
0004	Heather	8	15	32
0005	Marjorie	2	7	30
0006	Victor	8	15	40

Problem 2: Insert/delete/update anomalies

SID (S)	Name (N)	Rating (R)	Wage (W)	Hours (H)
0001	Terri	8	15	40
0002	Garrett	5	10	30
0003	Lorene	5	10	30
0004	Heather	8	15	32
0005	Marjorie	2	7	30
0006	Victor	8	15	40

Functional Dependencies: Anomalies

- Update anomaly: if we change a wage for one person, we have to change it for everyone
- Insert anomaly: if we want to insert a person with rating 10,
 we have to figure out the wage associated with it
- Delete anomaly: if we delete all employees with rating 8, we no longer know the wage value corresponding to rating 8 (what if we add a rating 8 person later?)

Functional Dependencies: Schema Decomposition Solution: Move rating and wage information to a separate table

SID (S)	Name (N)	Rating (R)	Hours (H)			
0001	Terri	8	40	_		
0002	Garrett	5	30	R	\rightarrow W	
0003	Lorene	5	30	Rating (R)	Wage (W)	
0004	Heather	8	32	8	15	
0005	Marjorie	2	30	2	7	
0000	Warjone	2		5	10	
0006	Victor	8	40			

- functional dependency: X → Y (X determines Y)
 - X, Y are sets of attributes
 - if attributes in X match, then attributes in Y must match
- superkey: X is a superkey of R if $X \rightarrow [all attributes of R]$
- candidate key: a set of keys that determines all columns in a relation and no columns that can be removed and still be a superkey

Functional Dependencies: Inference Rules

- Armstrong's Axioms
 - \circ Reflexivity: If Y \subseteq X, then X \rightarrow Y
 - \circ Augmentation: If X \rightarrow Y, then XZ \rightarrow YZ
 - $XZ \rightarrow YZ$ does NOT imply $X \rightarrow Y$
 - \circ Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - \circ XZ \rightarrow Y does NOT imply X \rightarrow Y and Z \rightarrow Y

Functional Dependencies: Closure

- The closure of a set of FDs F is F⁺
 - set of all FDs implied by F
 - hard to find, exponential in # of attributes, so we use attribute closure instead

- The attribute closure of an attribute X given a set of FDs is X⁺
 - set of all attributes A such that X → A is in F⁺
 (all attributes that can be determined by just X)

Functional Dependencies: Closure

- The attribute closure of an attribute X given a set of FDs is X⁺
 - o set of all attributes A such that $X \to A$ is in F^+ (all attributes that can be determined by just X)
 - Algorithm:
 - Closure = X;
 - Repeat until there is no change
 - If there is an FD U \rightarrow V in F s.t. U \subseteq closure,
 - set closure = closure U V

Worksheet: FDs

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

×	у	Z
1	2	0
1	2	1
1	3	0
2	3	0

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

×	у	Z
1	2	0
1	2	1
1	3	0
2	3	0

None.

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	у	Z
1	2	1
1	3	1
2	3	0

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	у	Z
1	2	1
1	3	1
2	3	0

 $XY \rightarrow YZ$.

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	у	Z
1	3	1
2	3	0

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	у	Z
1	3	1
2	3	О

 $X \rightarrow Y, XY \rightarrow YZ.$

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	У	Z
1	3	1

Consider a relation R(x, y, z) and the functional dependencies $X \to Y$, $XY \to YZ$, and $Y \to X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

x	У	z
1	3	1

 $X \rightarrow Y, XY \rightarrow YZ, Y \rightarrow X.$

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

 A^{+}

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

```
A<sup>+</sup>
A → B (AB)
AB → AC (ABC)
BC → BD (ABCD)
ABCD
```

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

B⁺, C⁺, D⁺

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

B⁺, C⁺, D⁺

B, C, D

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

AB⁺, AC⁺, AD⁺

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

AB⁺, AC⁺, AD⁺

ABCD

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

BC⁺

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

```
BC<sup>+</sup>
BC → BD (BCD)
BCD
```

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

BD⁺

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

BD⁺

BD

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

 CD^{+}

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

 CD^{+}

CD

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

BCD⁺

Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.

BCD⁺

BCD

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

A

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

A

 $A^+ = ABCD$

candidate key because A⁺ is a minimal set of keys to cover all symbols in F

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

B, C, D

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

B, C, D

$$B^{+} = B, C^{+} = C, D^{+} = D$$

neither because none of them cover all symbols in F

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

AB, AC, AD

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

AB, AC, AD

$$AB^+ = AC^+ = AD^+ = ABCD$$

superkeys because A is a candidate key, so any more symbols added to A is not the minimal set of symbols to cover all symbols in F and thus, a superkey

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

BC

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

BC

 $BC^{+} = BCD$

neither

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

BD, CD, BCD

Consider again the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.

BD, CD, BCD

 $BD^{+} = BD$, $CD^{+} = CD$, $BCD^{+} = BCD$

neither

Boyce-Codd Normal Form (BCNF)

Normalization: Boyce-Codd Normal Form (BCNF)

- R is in BCNF if:
 - \circ for every FD X \rightarrow A that holds over R,
 - \blacksquare either A \subseteq X OR X is a superkey
- No redundancy in BCNF
 - every field of every tuple contains some information that cannot be inferred from the FDs

Normalization: Boyce-Codd Normal Form (BCNF)

 We can decompose a relation R that is not in BCNF into multiple relations that are in BCNF

- For each FD X → Y in F⁺:
 - O If X → Y violates BCNF:
 - Decompose R into (R X⁺) U X and X⁺

• Final result depends on order of decomposition

Decompose R = ABCDE into BCNF, given the functional dependency set:

$$F = \{A \rightarrow E, C \rightarrow E, B \rightarrow CD, B \rightarrow A\}.$$

Decompose R = ABCDE into BCNF, given the functional dependency set:

$$F = \{A \rightarrow E, C \rightarrow E, B \rightarrow CD, B \rightarrow A\}.$$

Relations: {ABCDE} → {AE, ABCD}

- A is not a superkey. A⁺ = AE
- A & E are in a relation together, so we split A+ and
 (R A+) U A = ABCD out from the offending relation.

Decompose R = ABCDE into BCNF, given the functional dependency set:

$$F = \{A \rightarrow E, C \rightarrow E, B \rightarrow CD, B \rightarrow A\}.$$

Relations: {AE, ABCD}

C & E are not both in a relation, so nothing happens.

Decompose R = ABCDE into BCNF, given the functional dependency set:

$$F = \{A \rightarrow E, C \rightarrow E, B \rightarrow CD, B \rightarrow A\}.$$

Relations: {AE, ABCD}

- B is a superkey for {ABCD}. B⁺= ABCDE (from B → CD, C → E, B → A)
- B, C, & D are in a relation together, because B is a superkey, we don't split ABCD.

Decompose R = ABCDE into BCNF, given the functional dependency set:

$$F = \{A \rightarrow E, C \rightarrow E, B \rightarrow CD, B \rightarrow A\}.$$

Relations: {AE, ABCD}

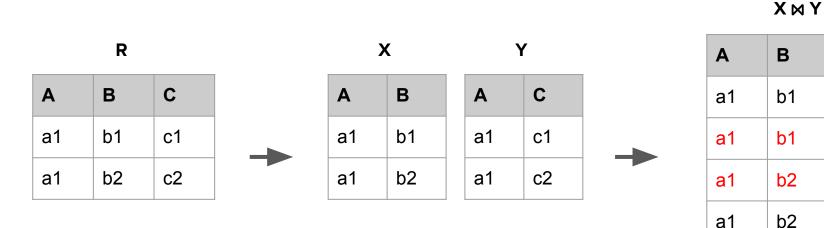
- B is a superkey for {ABCD}.
- B & A are in a relation together, because B is a superkey, we don't split ABCD.

Decomposition Problem: Lossiness

- lossiness: we may not be able to reconstruct the original relation
 - doesn't actually lose data, it generates bad data
- Decompose R into X and Y. Decomposition is lossless iff f⁺ contains:
 - X INTERSECT Y → X or
 - O X INTERSECT Y → Y
- BCNF is always lossless (good)

Decomposition Lossiness Example

Given R = ABC with $F = B \rightarrow C$, if we decompose it into two relations AB and AC, and then join AB and AC on A, we aren't going to have the same rows as the original relation.


C

c1

c2

c1

c2

Dependency Preserving Decompositions

- dependency preserving: if we can enforce F+ individually on each table and this in turn enforces the FDs on the entire database
- Formalism: dependency preserving iff $(F_x \cup F_y)^+ = F^+$ where F_x are the FDs we can enforce just in relation X
 - For example: imagine we decomposed R = ABC into X=AB, Y=BC. If F: $\{A \rightarrow B, A \rightarrow C\}$ this is not dependency preserving because we can't enforce the dependency $A \rightarrow C$ on either relation
- BCNF is not necessarily dependency preserving

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

 $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$$

Relations: {ABCDEFG} → {ABCDEF, ABG}

- AB⁺ = ABCDEF, not a superkey for {ABCDEFG}
- $(R AB^+) U AB = ABG$

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$$

Relations: {ABCDEF, ABG} → {ABCD, CEF, ABG}

- C⁺= CEF, not a superkey for {ABCDEF}
- $(ABCDEF C^+) U C = ABCD$

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$$

Relations: {ABCD, CEF, ABG} → {ABCD, CEF, AG, BG}

- G⁺ = GAF, not a superkey for {ABG}
- $(ABG G^+) U G = BG$

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

 $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$

Relations: {ABCD, CEF, AG, BG}

There aren't any relations with G&F both in them

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

$$F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$$

Relations: {ABCD, CEF, AG, BG}

 CE → F does not violate BCNF since CE is a superkey for CEF

Worksheet (3.2): Normal Forms

Decompose R = ABCDEFG into BCNF, given the functional dependency set:

 $F = \{AB \rightarrow CD, C \rightarrow EF, G \rightarrow A, G \rightarrow F, CE \rightarrow F\}.$

Is the above decomposition lossless?

Yes, because BCNF is always lossless.

Worksheet (3.3): Normal Forms

Does the above decomposition preserve dependencies? Why/why not?

No, $G \rightarrow F$ is not represented in the closure of the union of each subrelation's dependencies.

Attendance Link

https://cs186berkeley.net/attendance

