
Recovery

R&G - Chapter 20

Review: The ACID properties

• Atomicity: All actions in the Xact happen, or none happen.

• Consistency: If the DB starts consistent before the Xact…
 it ends up consistent after.

• Isolation: Execution of one Xact is isolated from that of other Xacts.
• Durability: If a Xact commits, its effects persist.

• Recovery Manager
• Atomicity & Durability
• Also to rollback transactions that violate Consistency

Motivation

• Atomicity:
• Transactions may abort (“Rollback”).

• Durability:
• What if DBMS stops running?

• Desired state after system restarts:
• T1 & T3 should be durable.
• T2, T4 & T5 should be aborted (effects not seen).

• Questions:
• Why do transactions abort?
• Why do DBMSs stop running?

crash!
T1
T2
T3
T4
T5

Abort
Commit

Commit

Atomicity: Why Do Transactions Abort?

• User/Application explicitly aborts
• Failed Consistency check

• Integrity constraint violated

• Deadlock
• System failure prior to successful commit

Transactions and SQL

• You don’t need SQL to want transactions and vice versa
• But they often go together

• SQL Basics
• BEGIN

• COMMIT

• ROLLBACK

SQL Savepoints

• Savepoints
• SAVEPOINT <name>
• RELEASE SAVEPOINT <name>

• Makes it as if the savepoint never existed
• ROLLBACK TO SAVEPOINT <name>

• Statements since the savepoint are rolled back

BEGIN;
INSERT INTO table1 VALUES ('yes1');
SAVEPOINT sp1;

INSERT INTO table1 VALUES
('yes2');

RELEASE SAVEPOINT sp1;
SAVEPOINT sp2;

INSERT INTO table1 VALUES ('no');
ROLLBACK TO SAVEPOINT sp2;
INSERT INTO table1 VALUES ('yes3');

COMMIT;

Example of SQL Integrity Constraints

• Constraint violation rolls back transaction

Durability: Why Do Databases Crash?

• Operator Error
• Trip over the power cord
• Type the wrong command

• Configuration Error
• Insufficient resources: disk space
• File permissions, etc.

• Software Failure
• DBMS bugs, security flaws, OS bugs

• Hardware Failure
• Media or Server

Assumptions for Our Recovery Discussion

• Concurrency control is in effect.
• Strict 2PL, in particular.

• Updates are happening “in place”.
• i.e. data is modified in buffer pool and pages in DB are overwritten

• Transactions are not done on “private copies” of the data.

Exercise in Simplicity

• Devise a simple scheme (requiring no logging) for Atomicity & Durability

• Questions:
• What is happening during the transaction?

• What happens at commit for Durability?

• How do you rollback on abort?

• How is Atomicity guaranteed?

• Any limitations/assumptions?

Buffer Pool

Database

Exercise in Simplicity, cont

• Devise a simple scheme (requiring no logging) for Atomicity & Durability

• Example:
1. Dirty buffer pages stay pinned in the buffer pool

• Can’t be “stolen” by replacement policy
• Page-level locking to ensure 1 transaction per page

2. At commit, we:
a. Force dirty pages to disk
b. Unpin those pages
c. Then we commit

• Unfortunately, this doesn’t work!

Buffer Pool

Database

Problems with Our Simplistic Solution

1. All dirty pages stay pinned in the buffer pool
What happens if buffer pool fills up?
Not scalable!

2. At commit, we:
a. Force dirty pages to disk

b. Unpin those pages

c. Then we commit
What if DBMS crashes halfway through step a?
Not atomic!

Buffer Pool

Database

Buffer Management Plays a Key Role

• NO STEAL policy – don’t allow buffer-pool frames with uncommited
updates to be replaced (or otherwise flushed
to disk).

• Useful for achieving atomicity without UNDO logging.
• But can cause poor performance (pinned pages limit buffer

replacement)
• FORCE policy: make sure every update is “forced” onto the DB disk

before commit.
• Provides durability without REDO logging.
• But, can cause poor performance (lots of random I/O to commit)

• Our simple idea was NO STEAL/FORCE
• And even that didn’t really achieve atomicity

Buffer Pool

Database

Preferred Policy: Steal/No-Force

• Most complicated, but highest performance.
• NO FORCE (complicates enforcing Durability)

• Problem: System crash before dirty buffer page of a committed transaction is
flushed to DB disk.

• Solution: Flush as little as possible, in a convenient place, prior to commit.
Allows REDOing modifications.

• STEAL (complicates enforcing Atomicity)
• What if a Xact that flushed updates to DB disk aborts?
• What if system crashes before Xact is finished?
• Must remember the old value of flushed pages

• (to support UNDOing the write to those pages).

This is a dense slide … and the crux of the
lecture.
Read it over carefully, and return to it later!

Buffer Management summary

Force

No
Force

No Steal Steal

Slowest

Fastest

Performance
Implications

No Steal Steal

No REDO

No UNDO UNDO

No REDO

 UNDO
REDO

No UNDO
REDO

Logging/Recovery
Implications

Force

No
Force

Basic Idea: Logging

• For every update, record info to allow REDO/UNDO in a log.
• Sequential writes to log (on a separate disk).

• Minimal info written to log: pack multiple updates in a single log page.

• Log: An ordered list of log records to allow REDO/UNDO
• Log record contains:

• <XID, pageID, offset, length, old data, new data>

• and additional control info (which we’ll see soon).

DB Log

Write-Ahead Logging (WAL)
• The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the corresponding data page gets to the
DB disk.

2. Must force all log records for a Xact before commit.

• I.e. transaction is not committed until
all of its log records including its “commit” record are on the stable log.

• #1 (with UNDO info) helps guarantee Atomicity.
• #2 (with REDO info) helps guarantee Durability.
• This allows us to implement Steal/No-Force

DB Log

WAL & the Log

• Log: an ordered file, with a write buffer (“tail”) in RAM.
• Each log record has a Log Sequence Number (LSN).

• LSNs unique and increasing.

LSNs flushedLSN

RAM

Log records flushed to disk time

time Log tail

WAL & the Log, Pt 2

• Log: an ordered file, with a write buffer (“tail”) in RAM.
• Each log record has a Log Sequence Number (LSN).

• LSNs unique and increasing.
• flushedLSN tracked

in RAM

Log records flushed to disk time

time Log tailflushedLSN

WAL & the Log, Pt 3

• Each data page in the DB contains a pageLSN.
• A “pointer” into the log
• The LSN of the most recent log record for an update to that page.

Log records flushed to disk time

time Log tailflushedLSN

DB
pageLSN

LSNs pageLSNs flushedLSN

DB RAM

WAL & the Log, Pt 4

• WAL: Before page i is flushed to DB, log must satisfy:
• pageLSNi ≤ flushedLSN

Log records flushed to disk time

DB

time Log tailflushedLSN

Buffer Pool

LSNs pageLSNs flushedLSN

DB RAM

WAL & the Log, Pt 5

• WAL: Before page i is flushed to DB, log must satisfy:
• pageLSNi ≤ flushedLSN

Log records flushed to disk time

DB

time Log tailflushedLSN

Buffer Pool

①

①

LSNs pageLSNs flushedLSN

DB RAM

WAL & the Log, Pt 6

• WAL: Before page i is written to DB, log must satisfy:
• pageLSNi ≤ flushedLSN

Log records flushed to disk time

time Log tailflushedLSN

Buffer Pool

①

①

DB②

LSNs pageLSNs flushedLSN

DB RAM

WAL & the Log, Pt 7

• WAL: Before page i is written to DB, log must satisfy:
• pageLSNi ≤ flushedLSN

• Don’t need to steal buffer frame if page is hot
• can write back later

Log records flushed to disk time ①

DB

time Log tailflushedLSN

Buffer Pool
①

LSNs pageLSNs flushedLSN

DB RAM

Summary

• WAL: Before page i is written to DB, log must satisfy:
• pageLSNi ≤ flushedLSN

• Exactly how is logging (and recovery!) done?
• We’ll look at the

ARIES algorithm
from IBM.

LSNs pageLSNs flushedLSN

DB RAM

Log records flushed to disk time ①

DB

time Log tailflushedLSN

Buffer Pool
①

UNDO Logging

26

FORCE and STEAL

27

Undo Logging

Log records
• <START T>

• transaction T has begun

• <COMMIT T>
• T has committed

• <ABORT T>
• T has aborted

• <T,X,v>
• T has updated element X, and its old value was v

28

Undo Logging: Idea

• At recovery time, undo the transactions that have not
been committed.

• Leave committed transactions alone.

29

Undo-Logging (Steal/Force) Rules

U1: If T modifies X, then <T,X,v> must be written to disk before the dirty page
containing X
>> Want to record the old value before the new value replaces the old value
permanently on disk.

U2: If T commits, then dirty pages must be written to disk before <COMMIT T>
>> Want to ensure that all changes written by T have been reflected before T is
allowed to commit.

• Hence: dirty data page writes are done early, before the transaction commits
FORCE

Allows STEAL

30

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

31WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

32WHAT DO WE DO ? We UNDO by setting B=8 and A=8

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

33What do we do now ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !

What do we do now ? Nothing: log contains COMMIT

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

?

?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

FETCH(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

FETCH(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

COMMIT <COMMIT T>
36RULES: log entry before dirty pages before COMMIT

37

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question 1: Which updates
are undone?

Question 2:
How far back
do we need to
read in the log?

Question 3:
What happens if there
is a second crash,
during recovery?

Crash !

All uncommitted
txns

Scan entire log for
uncommitted txns

OK: undos are
idempotent

However, perf implications fixed by ARIES

38

Recovery with Undo Log

After system crash, run recovery manager

1. Decide for each transaction T whether it is completed or not
• <START T>….<COMMIT T>…. = yes
• <START T>….<ABORT T>……. = yes
• <START T>……………………… = no

2. Undo all modifications by incomplete transactions

39

Recovery with Undo Log

Recovery manager:
• Read log from the end; cases:

• <COMMIT/ABORT T>: mark T as completed

• <T,X,v>: if T is not completed
then write X=v to disk

else ignore /* committed or aborted txn. */

• <START T>: ignore

• How far back do we need to go?
• All the way to the start!

• Fixed by checkpointing (later)

40

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2> • Write v2 to X2 on disk

• Write v3 to X3 on disk
• Mark T5 as completed
• Write v4 to X4 on disk

• Write v1 to X1 on disk

• Write v6 to X6 on disk

REDO Logging

41

NO-FORCE and NO-STEAL

42

Redo Logging

Log records
• <START T>

• transaction T has begun

• <COMMIT T>
• T has committed

• <ABORT T>
• T has aborted

• <T,X,v>
• T has updated element X, and its new value was v

43

Redo Logging: Idea

• At recovery time, redo the txns that have been
committed.

• Leave uncommitted txns alone.

44

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and <COMMIT T> must be written to
disk before dirty pages are written to disk

• Hence: dirty data page writes are done late, after commit
• This is WAL!

NO-STEAL

45

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

46How do we recover ?

Crash !

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

47How do we recover ? We REDO by setting A=16 and B=16

Crash !

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

48How do we recover ?

Crash !

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

49How do we recover ? Nothing to do!

Crash !

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

50

When must
we force pages
to disk ?

?

?

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

FLUSH(A) 16 16 16 16 8

FLUSH(B) 16 16 16 16 16

51RULE: dirty data writes after COMMIT

NO-STEAL

52

Recovery with Redo Log

After system crash, run recovery manager
1. Decide for each transaction T whether it is completed or not

• <START T>….<COMMIT T>…. = yes
• <START T>….<ABORT T>……. = yes
• <START T>……………………… = no

2. Read log from the beginning, redo all updates of committed transactions

Again, this could be slow! Fix with checkpointing (later)

53

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

 Committed transactions: T2

 Write v2 to X2 on disk

 Do Nothing

 Do Nothing

 Do Nothing
 Do Nothing

Crash !

54

Comparison Undo/Redo

• Undo logging:
• Dirty data page writes must be done early
• If <COMMIT T> is seen, T definitely has written all its data to disk (hence, don’t need to

undo)

• Redo logging
• Dirty data page writes must be done late
• If <COMMIT T> is not seen, T definitely has not written any of its data to disk (hence there

is no dirty data on disk)

55

Pro/Con Comparison Undo/Redo

• Undo logging: (Steal/Force)
• Pro: Less memory intensive: flush updated data pages as soon as log records are flushed, only then

COMMIT.
• Con: Higher latency: forcing all dirty buffer pages to be flushed prior to COMMIT can take a long time.

• Redo logging: (No Steal/No Force)
• Con: More memory intensive: cannot flush data pages unless COMMIT log has been flushed.
• Pro: Lower latency: don’t need to wait until data pages are flushed to COMMIT

ARIES Log Records
• prevLSN is the LSN of the previous log record written by this XID

• So records of an Xact form a linked list backwards in time

prevLSNs

LSNs pageLSNs flushedLSN

DB RAM

prevLSNs

Log Records, Pt 2
• prevLSN is the LSN of the previous log record written by this XID

• So records of an Xact form a linked list backwards in time

• Possible log record types:
• Update, Commit, Abort

• Checkpoint (for log maintainence)

• Compensation Log Records (CLRs)
• (for UNDO actions)

• End (end of commit or abort)

LSN
prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

LSNs pageLSNs flushedLSN

DB RAM

prevLSNs

Log Records, Pt 3

• Update records contain sufficient information for REDO and UNDO
• Our “physical diff” to the left works fine.
• There are other encodings that can be more

space-efficient
LSN
prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

LSNs pageLSNs flushedLSN

DB RAM

prevLSNs

Other Log-Related State

• Two in-memory tables:
• Transaction Table

• One entry per currently active Xact.
• removed when Xact commits or aborts

• Contains:
• XID
• Status (running, committing, aborting)
• lastLSN (most recent LSN written by Xact).

• Dirty Page Table
• One entry per dirty page currently in buffer pool.
• Contains recLSN

• LSN of the log record which first caused the page to be dirty.

XID Status lastLSN

1 R 33

2 C 42

PageID recLSN

46 11

63 24

Transaction Table

Dirty Page Table

ARIES Big Picture: What’s Stored Where

Data pages
each with a
pageLSN

Master record

DB

LSN
prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords Xact Table
 xid

lastLSN
status

Dirty Page Table
 pid

recLSN

Log tail
flushedLSN

Buffer pool

RAM

Slide Deck Title

ARIES*
• ARIES pieces together several techniques into a

comprehensive algorithm

• Developed at IBM Almaden, by C Mohan

• Several variations, e.g., for distributed transactions

• But first, we need to discuss the concept of checkpoint

*Algorithms for Recovery and Isolation Exploiting Semantics

Slide Deck Title

Checkpoint
• Idea: save the state the database periodically so that we don’t

need to always process the entire log during recovery

• During a checkpoint:
• Stop accepting new transactions
• Wait until all current transactions complete (i.e., commit / abort)
• Flush log to disk
• Flush all dirty pages to disk
• Write a <CKPT> log record, flush log again
• At this point, changes by committed txns are written

to disk, and aborted txns have been rolled back

• Resume transactions

Slide Deck Title

Undo Recovery with Checkpointing
…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3>
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Stop at first <CKPT>

Txns T2,T3,T4,T5 need to be
recovered

All txns here are completed
No need to recover
Can truncate this part of the log

Slide Deck Title

Fuzzy Checkpointing

• Problem: database freezes during checkpoint
• Not accepting any new transactions!

• Want DB to keep process txns during checkpoint
• Idea: fuzzy checkpointing

• Save state of all txns and page statuses
• Some txns can be running and dirty pages not flushed

yet!
• Need data structures to store such info

Slide Deck Title

Fuzzy Checkpointing: Idea
• Keep track of:

1. txn states (running, committing, etc) – this is the Xact Table
2. dirty pages and which txn’s action first caused page to become

dirty – this is the Dirty Page Table

• Save 1 and 2 to disk during checkpoint
• At recovery:

• Re-create 1 and 2 from the log
• Re-create running txns and dirty pages in memory
• Replay rest of the log (will see what this means)

Slide Deck Title

Fuzzy Checkpointing: Data Structures

• Each log record has a Log Sequence Number
(LSN)

• A unique integer that’s increasing (e.g., line
number)

• Each data page has a Page LSN
• The LSN of the most recent log record that

updated that page.

Slide Deck Title

Fuzzy Checkpointing: Data Structures

• Dirty Page Table
• Lists all dirty pages
• For each dirty page: recoveryLSN (recLSN) =

first LSN that caused page to become dirty

• Transactions Table
• Lists all txn’s and their statuses
• For each txn: lastLSN = its most recent update

LSN (if active)

pageID recLSN
P5 102
P6 103
P7 101

Dirty pages table

txnID lastLSN Status

T100 104 commit

T200 103 abort

Transactions

Slide Deck Title

Fuzzy Checkpointing: Data Structures

LSN prevLSN txnID pageID Log Payload

101 - T100 - START

102 - T200 - START

103 102 T200 P6 <old val, new val>

104 101 T100 P5 <old val, new val>

Log (WAL)

• Write ahead log
• Store both old and new values in update records
• New field prevLSN = LSN of the previous log record written by this txnID
• Actions of a transaction form a linked list backwards in time

Slide Deck Title

Fuzzy Checkpointing Example

pageID recLSN
P5 102
P6 103
P7 101

Dirty pages table (DPT)

Transactions

LSN prevLSN txnID pageID Payload
101 - T100 P7 START
102 - T200 P5 START
103 102 T200 P6 6, 21
104 101 T100 P5 39, 100

Log (WAL)

P8 P2 . . .
P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

… … …

Buffer Pool
txnID lastLSN Status

T100 104 commit

T200 103 abort

Slide Deck Title

Fuzzy Checkpointing: Protocol

• Write a <BEGIN CKPT> to log
• Flush log to disk
• Continue normal operation
• When DPT and Transactions

tables are written to the disk,
write <END CKPT> to log

• Flush log to disk

pageID recLSN
P5 102
P6 103
P7 101

Dirty pages table (DPT)

Transactions
txnID lastLSN Status

T100 104 commit

T200 103 abort

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

What to do when a transaction:
• Starts
• Updates a page
• Commits
• Aborts

• What to do when buffer
manager:
• FETCH a page from disk
• FLUSH a page to disk

txnID lastLSN Status

T100 101 running

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

txnID lastLSN Status

T100 101 runningTransaction starts
• Write START record in Log
• Update Transactions table

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

102 - T105 - START

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

Transaction starts
• Write START record in Log
• Update Transactions table

Ex: T105 starts
• Write <START,T105> in Log
• Add T105 in Transactions and

set lastLSN = null

Transactions
txnID lastLSN Status

T100 101 running

T105 - running

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

Transaction updates
• Write update record in Log
• Update the following:

• prevLSN=lastLSN
• pageLSN=LSN
• lastLSN=LSN
• recLSN=if null then LSN

txnID lastLSN Status

T100 101 running

Slide Deck Title

Transaction updates
• Write update record in Log
• Update the following:

• prevLSN=lastLSN
• pageLSN=LSN
• lastLSN=LSN
• recLSN=if null then LSN

Ex: T100 writes 10 in P7
• Write <T100,P7,5,10> in the Log

• New LSN: 102
• Update other tables (see arrows)

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

102 101 T100 P7 5, 10

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=102

Buffer Pool

txnID lastLSN Status

T100 102 running

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

Page flushes
• Flush log up to (and incl.) pageLSN
• Remove page from Dirty Pages

Table and Buffer Pool

Ex: Buffer manager wants to
FLUSH(P7)
• Flush Log up to (and incl.) 101
• Remove P7 from Dirty Pages

Table and Buffer Pool

txnID lastLSN Status

T100 101 running

Slide Deck Title

ARIES Normal Operation

pageID recLSN

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 . . .

P5
PageLSN=…

P6
PageLSN=…

Buffer Pool

txnID lastLSN Status

T100 101 runningPage flushes
• Flush log up to (and incl.) pageLSN
• Remove page from Dirty Pages

Table and Buffer Pool

Ex: Buffer manager wants to
FLUSH(P7)
• Flush Log up to (and incl.) 101
• Remove P7 from Dirty Pages

Table and Buffer Pool

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P2 -

Dirty pages table

Transactions

LSN prevLSN txnID pageID Payload

101 - T100 P7 1, 5

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

Buffer Pool

txnID lastLSN Status

T100 101 runningPage fetches
• Create entry in Dirty Pages

Table and Buffer Pool

Ex: Buffer manager wants
FETCH(P2)
• Create entry in Dirty Pages table

set recLSN = NULL
• Bring page into Buffer Pool

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

LSN prevLSN txnID pageID Payload

101 - T100 - START

102 - T100 P7 1, 5

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=…

P7
PageLSN=101

Buffer Pool

Transaction commits
• Write commit record to Log
• Flush Log up to this entry

• Txn is now considered committed!
• Update Transactions to commit
• Write end record to Log
• Update Transactions to complete

• Recall we are using WAL!

Transactions
txnID lastLSN Status

T100 102 running

Slide Deck Title

ARIES Normal Operation

pageID recLSN

Dirty pages table

LSN prevLSN txnID pageID Payload

101 - T100 - START

102 - T100 P7 1, 5

103 - T100 - COMMIT

104 - T100 - END

Log (WAL)

P8 P2 . . .

Buffer Pool

Transactions
txnID lastLSN Status

T100 102 complete
Transaction commits
Ex: T100 commits
• Write <COMMIT,T100>
• Flush Log up to this entry
• Update Transactions to commit
• Write <END,T100> in the Log
• Update Transactions to complete

Slide Deck Title

ARIES Normal Operation

pageID recLSN

P7 101

Dirty pages table

LSN prevLSN txnID pageID Payload

101 - T100 - START

102 101 T100 P7 1, 5

103 102 T100 P6 2, 6

Log (WAL)

P8 P2 . . .

P5
PageLSN=…

P6
PageLSN=103

P7
PageLSN=102

Buffer Pool

Transaction aborts
• Write abort record to Log
• Find first action to undo from lastLSN
• Go to log and start undo changes
• Write compensation record (CLR) to Log

• CLR’s undoNextLSN points to next record
to undo (part of the payload)

• Follow prevLSN to retrace more (if any)
actions to undo

• Once done, change Transactions to abort
• Write end record to Log
• Update Transactions to complete

Transactions
txnID lastLSN Status

T100 103 running

Slide Deck Title

ARIES Normal Operation
Ex: T100 aborts
• Write <ABORT,T100> to Log
• From lastLSN, LSN 103 is first to undo
• Undo 103 and write <CLR, 102, P6, 2>

• 102 is the next record to undo
• Follow prevLSN, LSN 102 is next to undo
• Undo 102 and write <CLR, -, P7, 1>

• No more actions to undo!
• Change Transactions to abort
• Write <END,T100> to Log
• Update Transactions to complete

LSN prevLSN txnID pageID Payload

101 - T100 - START

102 101 T100 P7 1, 5

103 102 T100 P6 2, 6

Log (WAL)

Transactions
txnID lastLSN Status

T100 103 running

Will see a better algorithm in a few slides!

107 106 T100 - END

104 103 T100 - ABORT

105 104 T100 P6 CLR, 102, P6, 2

106 105 T100 P7 CLR, -, P7, 1

106 abort
complete107

Slide Deck Title

ARIES Recovery
• Start recovery from the last checkpoint

• Easy to recover with non-fuzzy checkpoints. Just roll forward!
• With fuzzy checkpoints, we now need to handle:

• Active transactions when checkpoint was taken
• Dirty pages that were not flushed to disk yet

• Main principles:
• Redo all actions before crash and bring DBMS to the exact state right when it

crashed
• Unroll changes from incomplete txns when crash occurred
• Log all undo changes to ensure changes are not undone

Slide Deck Title

ARIES Recovery

(crash)

Checkpoint

Log
Txn T100 was

active here
Txn T100
commits

First write
by Txn T100

Txn T101 was
active here

Txn T101
still running

Txn T101
starts

REDO!

UNDO!

How to find
these two points

in the log?

Slide Deck Title

ARIES Recovery
Recovery from a system crash is done in 3 passes:

1. Analysis pass
• Recreate list of dirty pages and active transactions

2. Redo pass
• Redo all operations, even for those that were incomplete before crash
• Goal is to replay DB to the state at the moment of the crash

3. Undo pass
• Unroll effects of all incomplete transactions at time of crash
• Log changes during undo in case of another crash during undo

Slide Deck Title

1. Analysis Phase

• Goal
• Determine point in log (firstLSN) where to start REDO
• Determine set of dirty pages when crashed
• Identify active transactions when crashed

• Approach
• Rebuild transactions table and dirty pages table
• Recover these from the last checkpoint in the log
• Compute: firstLSN = smallest of all pages’ recoveryLSN

• This is the earliest point that a write was made to buffer pool that hasn’t
persisted yet

Slide Deck Title

1. Analysis Phase

(crash)CheckpointLog

Where do we start
the REDO phase ?

Dirty
pages

Txn
status

pageID recLSN
… …
… …

txnID lastLSN
… …
… …

Slide Deck Title

1. Analysis Phase

(crash)CheckpointLog

firstLSN=min(recLSN)

Dirty
pages

Txn
status

pageID recLSN
… …
… …

txnID lastLSN
… …
… …

Start
REDO
from here!

Slide Deck Title

2. Redo Phase

Main principle: replay history
• Process Log forward, starting from firstLSN
• Read every log record sequentially
• Redo actions are not recorded in the log

Slide Deck Title

2. Redo Phase: Details

For each Log entry record LSN: <T,P,old,new>
• Write new value to page P
• Only redo those that need to be redone

• How to determine that?

Slide Deck Title

2. Redo Phase: Details
For each Log entry record LSN: <T,P,old,new>
• If P is not in Dirty Page then don’t redo. How did this happen?

• P was flushed to DB, removed from DPT before checkpoint
• Then DPT flushed at checkpoint

• P is in DPT, but recLSN > LSN, then don’t redo. How did this happen?
• P was flushed to DB, removed from DPT before checkpoint
• Then P was read in again and reinserted in DPT with larger recLSN

• P’s pageLSN on disk > LSN, then don’t redo. How did this happen?
• P was updated again and flushed to DB after this log record

• Otherwise redo!

Slide Deck Title

2. Redo Phase: Details

What happens if system crashes during REDO ?

We REDO again! Each REDO operation is
idempotent: doing it twice is the as doing it once.

Slide Deck Title

3. Undo Phase

• A simple solution:
• All active txns in the Transactions Table are “losers.”
• Just abort each loser transaction
• Problem?

• Lots of random I/O in the log following the chain of
prevLSNs (see earlier slide)

• Can we do this in one backwards pass of log?

Slide Deck Title

3. Undo Phase

• Define ToUndo = set of lastLSN from the loser txns
• Get them from the transactions table

Transactions

txnID lastLSN Status

T100 103 complete

T101 104 running

Slide Deck Title

3. Undo Phase: Details
While ToUndo not empty:
• Choose most recent (largest) LSN in ToUndo
• If LSN is a regular log record <T,P,old,new,prevLSN>:

• Undo action
• Write a CLR where CLR.undoNextLSN = LSN.prevLSN
• If prevLSN is not null then insert prevLSN into ToUndo

• otherwise, write end record in log (we have fully aborted the txn)
• If LSN is a CLR record:

• Don’t undo!
• But if CLR.undoNextLSN not null, insert in ToUndo
• otherwise, write end record in log (we have fully aborted the txn)

We’re done when there are no more transactions to undo

We can use this algorithm to undo a single txn as well during normal operation

Slide Deck Title

3. Undo Phase: Details

What happens if system crashes during UNDO ?

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo

LOGGING

Normal Execution of an Xact

• Series of reads & writes, followed by commit or abort.
• For our discussion, the recovery manager sees page-level reads/writes
• We will assume that disk write is atomic.

• In practice, kind of tricky!
• STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

• Update, Commit, Abort log records written to log tail as we go
• Transaction Table and Dirty Page Table being kept current
• PageLSNs updated in buffer pool
• Log tail flushed to disk periodically in background

• And flushedLSN changed as needed
• Buffer manager stealing pages subject to WAL

Transaction Commit

• Write commit record to log.
• All log records up to Xact’s commit record are flushed to disk.

• Guarantees that flushedLSN ≥ lastLSN.

• Note that log flushes are sequential, synchronous writes to disk.

• Many log records per log page.

• Commit() returns.
• Write end record to log.

Simple Transaction Abort

• For now, consider an explicit abort of a Xact.
• No crash involved.

• We want to “play back” the log in reverse order, UNDOing updates.
• Get lastLSN of Xact from Xact table.

• Write an Abort log record before starting to rollback operations

• Can follow chain of log records backward via the prevLSN field.

• Write a “CLR” (compensation log record) for each undone operation.

Note: CLRs are a different type of log record we glossed over before

Abort, cont.

• To perform UNDO, must have a lock on data!
• No problem!

• Before restoring old value of a page, write a CLR:
• You continue logging while you UNDO!!
• CLR has one extra field: undonextLSN

• Points to the next LSN to undo
• i.e. the prevLSN of the record we’re currently undoing

• CLR contains REDO info
• CLRs never Undone

• Undo needn’t be idempotent (>1 UNDO won’t happen)
• But they might be Redone when repeating history

• (=1 UNDO guaranteed)
• At end of all UNDOs, write an “end” log record.

Currently Undoing
PrevLsn=1234

lastLSN(CLR)
undoNextLSN = 1234

Idempotent: can be applied
multiple times without

changing the result beyond
the initial application

Checkpointing

• Conceptually, keep log around for all time.
• Performance/implementation problems…

• Periodically, the DBMS creates a checkpoint
• Minimizes recovery time after crash. Write to log:

• begin_checkpoint record: Indicates when chkpt began.
• end_checkpoint record: Contains current Xact table DPT
• . A “fuzzy checkpoint”: Other Xacts continue to run;

• So all we know is that these tables are after the time of the begin_checkpoint
record.

• Store LSN of most recent chkpt record in a safe place
• (master record, often block 0 of the log file).

Currently Undoing
PrevLsn=1234

lastLSN(CLR)
undoNextLSN = 1234
Xact Table, DPT

CRASH RECOVERY

Crash Recovery: Big Picture

• Start from a checkpoint
• found via master record.

• Three phases. Need to do:
• Analysis - Figure out which Xacts committed since

checkpoint, which failed.

• REDO all actions.
• (repeat history)

• Reconstruct state of the DB before crash

• UNDO effects of failed Xacts.

Oldest log rec.
of Xact active
at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Recovery: The Analysis Phase
• Re-establish knowledge of state at checkpoint.

• via transaction table and dirty page table stored in the checkpoint

• Scan log forward from checkpoint.
• End record:

• Remove Xact from Xact table
• Update record:

• If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.
• !End record:

• Add Xact to Xact table
• set lastLSN=LSN
• change Xact status on commit or abort.

• At end of Analysis…
• For any Xacts in the Xact table in Committing state,:

• Write a corresponding END log record
• …and Remove Xact from Xact table.

• Now, Xact table says which xacts were active at time of crash.
• Change status of running xacts to aborting and write abort records

• DPT says which dirty pages might not have made it to disk

Phase 2: The REDO Phase

• We Repeat History to reconstruct state at crash:
• Reapply all updates (even of aborted Xacts!), redo CLRs.

• Scan forward from log rec containing smallest recLSN in DPT.
• Q: why start here?

• For each update log record or CLR with a given LSN, REDO the action unless:
• Affected page is not in the Dirty Page Table, or
• Affected page is in D.P.T., but has recLSN > LSN, or
• pageLSN (in DB) >= LSN. (this last case requires I/O)

• To REDO an action:
• Reapply logged action.
• Set pageLSN to LSN. No additional logging, no forcing!

Scenarios When We Do Not REDO

Given an update log record…
• Affected page is not in the Dirty Page Table. How did that happen?

• This page was flushed to DB, removed from DPT before checkpoint
• Then DPT flushed to checkpoint

• Affected page is in DPT, but has DPT recLSN > LSN. How?
• This page was flushed to DB, removed from DPT before checkpoint
• Then this page was referenced again and reinserted in DPT with larger recLSN

• pageLSN (in DB) >= LSN. (this last case requires DB I/O). How?
• This page was updated again and flushed to DB

after this log record

Phase 3: The UNDO Phase

• A simple solution:
• The xacts in the Xact Table are losers.

• For each loser, perform simple transaction abort (start or
 continue xact rollback)

• Problem?
• Lots of random I/O in the log following undoNextLSN chains.
• Can we do this in one backwards pass of log?

• Next slide!

Phase 3: The UNDO Phase, cont
toUndo = {lastLSNs of all Xacts in the Xact Table}
while !toUndo.empty():

thisLR = toUndo.find_and_remove_largest_LSN()

if thisLR.type == CLR:

if thisLR.undoNextLSN != NULL:
toUndo.insert(thisLR.undonextLSN)

else: // thisLR.undonextLSN == NULL
 write an End record for thisLR.xid in the log

else:

 if thisLR.type == UPDATE:

write a CLR for the undo in the log

undo the update in the database

if thisLR.prevLSN != NULL:

toUndo.insert(thisLR.prevLSN)

elif thisLR.prevLSN == NULL:

write an END record for thisLR.xid

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

 00

 05

 10

 20

 30

 40

 45

 50

 60

prevLSNsXact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

Using pencil and paper,
run the ARIES recovery
algorithm on this log,
assuming you have access
to a master record
pointing to LSN 05.
Maintain all the state on
the left as you go!

Example: Crash During Restart!

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

RAM

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

T2 abort, T3 abort

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
 00,05

 10

 20

 30

 40,45

 50

 60

 70,80

 90

100,105

110,115

undonextLSN

Using pencil and paper,
run the ARIES recovery
algorithm on this log,
assuming you have access
to a master record
pointing to LSN 05.
Maintain all the state on
the left as you go!

Additional Crash FAQs to Understand

Q: What happens if system crashes during Analysis?
A: Nothing serious. RAM state lost, need to start over next time.

Q: What happens if the system crashes during REDO?
A: Nothing bad. Some REDOs done, and we’ll detect that next time.

Q: How do you limit the amount of work in REDO?
A: Flush asynchronously in the background. Even“hot” pages!

Q: How do you limit the amount of work in UNDO?
A: Avoid long-running Xacts.

Summary of Logging/Recovery

• Recovery Manager guarantees Atomicity & Durability.
• Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.
• LSNs identify log records; linked into backwards chains per transaction (via

prevLSN).
• pageLSN allows comparison of data page and log records.

Summary, Cont.

• Checkpointing: Quick way to limit the amount of log to scan on recovery.
• Recovery works in 3 phases:

• Analysis: Forward from checkpoint.

• Redo: Forward from oldest recLSN.

• Undo: Backward from end to first LSN of oldest Xact alive (running, aborting) after Redo.

• Upon Undo, write CLRs.
• Redo “repeats history”: Simplifies the logic!

