Recovery

R&G - Chapter 20

Berkeley

cs186

Review: The ACID properties

e Atomicity: All actions in the Xact happen, or none happen.

* Consistency: If the DB starts consistent before the Xact...
it ends up consistent after.

e |solation: Execution of one Xact is isolated from that of other Xacts.

e Durability: If a Xact commits, its effects persist.

* Recovery Manager
* Atomicity & Durability
« Also to rollback transactions that violate Consistency

Motivation

« Atomicity:

« Transactions may abort (“Rollback™).
* Durability:

« What if DBMS stops running?

* Desired state after system restarts:
« T1 & T3 should be durable.

« T2, T4 & T5 should be aborted (effects not seen).

* Questions:
* Why do transactions abort?
Why do DBMSs stop running?

crash!
T1 Commit I
T2 Abort
T3 Commit |
T]
T5 L

Atomicity: Why Do Transactions Abort?

User/Application explicitly aborts

Failed Consistency check

* Integrity constraint violated
Deadlock
System failure prior to successful commit

Transactions and SQL

* You don’t need SQL to want transactions and vice versa
* But they often go together

 SQL Basics
¢* BEGIN
¢ COMMIT

®* ROLLBACK

SQL Savepoints

« Savepoints
e SAVEPOINT <name>

* RELEASE SAVEPOINT <name>
« Makes it as if the savepoint never existed

* ROLLBACK TO SAVEPOINT <name>
» Statements since the savepoint are rolled back

BEGIN;
INSERT INTO tablel VALUES ('yesl');
SAVEPOINT spl;
INSERT INTO tablel VALUES
('yes2');
RELEASE SAVEPOINT spl;
SAVEPOINT sp2;
INSERT INTO tablel VALUES ('no');
ROLLBACK TO SAVEPOINT sp2;
INSERT INTO tablel VALUES ('yes3');
COMMIT;

Example of SQL Integrity Constraints

* (Constraint violation rolls back transaction

cs186=# BEGIN;
cs186=# CREATE TABLE sailors(sid integer PRIMARY KEY, name text);
cs186=# CREATE TABLE reserves(sid integer, bid integer, rdate date,
cs186(# FOREIGN KEY (sid) REFERENCES sailors);
cs186=# INSERT INTO sailors VALUES (123, ‘popeye');
cs186=# INSERT INTO reserves VALUES (123, 1, '7/4/1776");
cs186=# COMMIT;
csl86=#
cs186=# BEGIN;
cs186=# DELETE FROM sailors WHERE name LIKE 'p%';

ERROR: update or delete on table "sailors™ violates foreign key constraint "reserves_sid_fkey" on
table "reserves”
DETAIL: Key (sid)=(123) is still referenced from table "reserves™.
cs186=# INSERT INTO sailors VALUES (124, 'olive oyl');

ERROR: current transaction is aborted, commands ignored until end of transaction block
cs186=# COMMIT;

csl186=#

cs186=# SELECT * FROM sailors;

sid | name

_____ +________

123 | popeye

(1 row)

Durability: Why Do Databases Crash?

Operator Error
* Trip over the power cord
* Type the wrong command
Configuration Error

* Insufficient resources: disk space

-
=
-
g
L
e
-
@
wE
! e
"
.‘}}a
. .

* File permissions, etc.

Software Failure
* DBMS bugs, security flaws, OS bugs

Hardware Failure
* Media or Server

Assumptions for Our Recovery Discussion

* Concurrency control is in effect.
® Strict 2PL, in particular.
* Updates are happening “in place”.

* |.e. data is modified in buffer pool and pages in DB are overwritten
* Transactions are not done on “private copies” of the data.

Exercise in Simplicity

» Devise a simple scheme (requiring no logging) for Atomicity & Durability

* Questions: Buffer Pool
* What is happening during the transaction?
* What happens at commit for Durability?
* How do you rollback on abort?

* How is Atomicity guaranteed? Database

* Any limitations/assumptions?

Exercise in Simplicity, cont

« Devise a simple scheme (requiring no logging) for Atomicity & Durability

 Example:

Buffer Pool

1. Dirty buffer pages stay pinned in the buffer pool
* Can’t be “stolen” by replacement policy
* Page-level locking to ensure 1 transaction per page
2. At commit, we:
a. Force dirty pages to disk Database
b. Unpin those pages
c. Then we commit

« Unfortunately, this doesn’t work!

Problems with Our Simplistic Solution

1. All dirty pages stay pinned in the buffer pool
What happens if buffer pool fills up?
Not scalable! Buffer Pool

2. At commit, we:
a. Force dirty pages to disk
b. Unpin those pages

C. Then we commit Database

What if DBMS crashes halfway through step a?
Not atomic!

Buffer Management Plays a Key Role

e NO STEAL policy — don't allow buffer-pool frames with uncommited

updates to be replaced (or otherwise flushed
to disk).

« Useful for achieving atomicity without UNDO logging.

- But can cause poor performance (pinned pages limit buffer Buffer Pool
replacement)

* FORCE policy: make sure every update is “forced” onto the DB disk
before commit.
» Provides durability without REDO logging.

« But, can cause poor performance (lots of random 1/O to commit) ﬁ

« Our simple idea was NO STEAL/FORCE Database
« And even that didn’t really achieve atomicity |

Preferred Policy: Steal/No-Force

* Most complicated, but highest performance.
e NO FORCE (complicates enforcing Durability)

* Problem: System crash before dirty buffer page of a committed transaction is
flushed to DB disk.

» Solution: Flush as little as possible, in a convenient place, prior to commit.
Allows REDOing modifications.

e STEAL (complicates enforcing Atomicity)
« What if a Xact that flushed updates to DB disk aborts?
« What if system crashes before Xact is finished?

» Must remember the old value of flushed pages
* (to support UNDOQOing the write to those pages).

This is a dense slide ... and the crux of the
lecture.

DAa~nA i+ Avrnvr ~avefiilhs AvA votirivie ¥~ 1+ I~FAr]

Buffer Management summary

No Steal Steal No Steal Steal
No Fastest No No UNDO l|!!!
roree B T
No UNDO UNDO
Force Slowest Force
No REDO No REDO
Performance Logging/Recovery

Implications Implications

Basic Idea: Logging

* For every update, record info to allow REDO/UNDO in a log.
* Sequential writes to log (on a separate disk).
* Minimal info written to log: pack multiple updates in a single log page.

* Log: An ordered list of log records to allow REDO/UNDO

* Log record contains:
¢ <XID, pagelD, offset, length, old data, new data>

* and additional control info (which we’ll see soon).

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the corresponding data page gets to the
DB disk.

2. Must force all log records for a Xact before commit.

* |.e. transaction is not committed until
all of its log records including its “commit” record are on the stable log.

#1 (with UNDO info) helps guarantee Atomicity.
#2 (with REDO info) helps guarantee Durability.
This allows us to implement Steal/No-Force

; DB ! g Log

WAL & the Log

flushedLSN

* Log: an ordered file, with a write buffer (“tail”) in RAM.

« Each log record has a Log Sequence Number (LSN).
« LSNs unique and increasing.

Log records flushed to disk

WAL & the Log, Pt 2

* Log: an ordered file, with a write buffer (“tail”) in RAM.

« Each log record has a Log Sequence Number (LSN).
« LSNs unique and increasing.

e flushedLSN tracked
in RAM

flushedLSN time

Log talil

Log records flushed to disk

WAL & the Log, Pt 3

LSNs pageLSNs flushedLSN

« [Each data page in the DB contains a pagelLSN.
« A“pointer” into the log
« The LSN of the most recent log record for an update to that page.

flushedLSN time Log tail

WAL & the Log, Pt 4

LSNs pageLSNs flushedLSN

- WAL.: Before page i is flushed to DB, log must satisfy:
* pageLSN. < flushedLSN

Buffer Pool

_____________ [

flushedLSN I::. e Log tal

Log records flushed to disk

WAL & the Log, Pt 5

LSNs pageLSNs flushedLSN

- WAL.: Before page i is flushed to DB, log must satisfy:
* pageLSN. < flushedLSN

=Uffer Pool

flushedLSN time Lo tail

Log records flushed to disk

WAL & the Log, Pt 6

LSNs pageLSNs flushedLSN

WAL.: Before page i is written to DB, log must satisfy:

* pageLSN. < flushedLSN

flushedLSN

Buffer Pool

WAL & the Log, Pt 7

LSNs pageLSNs flushedLSN

« WAL.: Before page i is written to DB, log must satisfy:

* pageLSN. < flushedLSN

« Don’t need to steal buffer frame if page is hot
can write back later

Buffer Pool

flushedLSN

Summary

LSNs pageLSNs flushedLSN

« WAL.: Before page i is written to DB, log must satisfy:
* pageLSN. < flushedLSN

« Exactly how is logging (and recovery!) done?
« We'll look at the

ARIES algorithm
from IBM.

Ruffer ool
0

flushedLSN™* “ime” | o B

UNDO Logging

FORCE and STEAL

26

Undo Logging

Log records
- <START T>

transaction T has begun

<COMMIT T>

* T has committed

- <ABORT T>

T has aborted
<T,X,v>

* T has updated element X, and its old value was v

27

Undo Logging: Idea

At recovery time, undo the transactions that have not
been committed.

« Leave committed transactions alone.

28

Undo-Logging (Steal/Force) Rules

@ws STEAL
U1: If T modifies X, then <T,X,v> must be written to disk before e dirty page

containing X
>> Want to record the old value before the new value replaces the old value
permanently on disk.

U2: If T commits, then dirty pages must be written to disk before <COMMIT T>

>> Want to ensure that all changes written by T have been reflected before T is
allowed to commit.

« Hence: dirty data page writes are done early, before the tmmits

29

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>

30

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t=tr2 16 8 8 8
WRITE(A.1) 16 16 8 8 <TA.8>
FETCH(B) 16 16 8 8 8
READ(B 1) 8 16 8 8 8
=t 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8 |
FLUSH(B) 16 16 16 16 16 craslh'
COMMIT <COMMITT> |

WHAT DO WE DO ?

31

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8 |
FLUSH(B) 16 16 16 16 16 o
COMMIT <COMMIT T>
WHAT DO WE DO ? || We UNDO by setting B=8 and A=8

32

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Crash'!

33

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
FETCH(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16
COMMIT <COMMIT '!'>c N

What do we do now ? Nothing: log contains COMMIT

Action t Mem A Mem B I Disk A Disk B UNDO Log
— <START T>
FETCH(A) 8 |~ When must %
READ(A 1) 3 8 we force pages)
t=t+2 16 8 (eXe . 8
WRITE(A,1) 16 16 8 8 <TA.8> T
FETCH(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t=t+2 16 16 8 8 8
WRITE(B, 1) 16 16 16 8 8 <T,B,8>
FLUSH(A) | [16 16 16 16 8
FLUSH(®B) || 16 16 16 16 16
COMMIT | <COMMIT T>

Action t Mem A Mem B Disk A Disk B UNDO Log
<START T>
FETCH(A) 8 8 8
READ(A 1) 8 8 8 8
t=tr2 16 8 8 8
WRITE(A 1) 16 16 8 8 }—"<1a8¥
FETCH(B) 16 16 8 8 8
READ(B 1) 8 16 8 8 8
=t 16 16 8 8 8
WRITEBY) | 16 16 16 8 | 8 1 C<TB8>)
CeLusHay T 16 | 16 +—16 | 16 8
CeLusHB2 16 16 16 16 16
COMMIT T | deommIT T

‘ RULES: log entry before dirty pages before COMMIT ‘

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,vi>
<T5,X5,v5>
<T4,X4,v4>

<T3,X3,v3>
<T2,X2,v2>

<COMMIT T5>

Crash !

Question 1: Which updates All uncommitted

are undone? txns

Question 2:

How far back Scan entire log for
do we need to uncommitted txns

read in the log?

Question 3:
What happens if there OK: undos are
is a second crash, idempotent

during recovery?

However, perf implications fixed by ARIES

Recovery with Undo Log

After system crash, run recovery manager

1. Decide for each transaction T whether it is completed or not

* <START T>....<COMMIT T>.... =yes
* <START T>....<ABORT T>....... =yes
* <START T>...iiiiiiiiiiiins =no

2. Undo all modifications by incomplete transactions

38

Recovery with Undo Log

Recovery manager:
 Read log from the end; cases:
* <COMMIT/ABORT T>: mark T as completed

* <TX,v>:if T is not completed
then write X=v to disk
else ignore /* committed or aborted txn. */

®* <START T>:ignore

 How far back do we need to go?
* All the way to the start!
* Fixed by checkpointing (later)

39

Recovery with Undo Log

<T16,X6,v6>

<START T5>
<START T4>
<T1,X1,vi>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

* Write v6 to X6 on disk

* Write v1 to X1 on disk

* Write v4 to X4 on disk
* Mark T5 as completed
» Write v3 to X3 on disk
* Write v2 to X2 on disk

40

REDO Logging

NO-FORCE and NO-STEAL

41

Redo Logging

Log records
<START T>

transaction T has begun

- <COMMIT T>

T has committed

<ABORT T>

T has aborted
. <TXv>

T has updated element X, and its new value was v

42

Redo Logging: |dea

At recovery time, redo the txns that have been
committed.

Leave uncommitted txns alone.

43

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v>and <COMMIT T> must be written to

disk before dirty pages are written to disk
Q)-STEAL

* Hence: dirty data page writes are done [ate, after commit
* This is WAL!

44

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

45

Crash'!

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16 \

How do we recover ?

46

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
FLUSH(A) 16 16 16 16 8
FLusHB) | 16 16 16 16 16 -

How do we recover ?

We REDO by setting A=16 and B=16

47

Crash!

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T=
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

How do we recover ?

48

Crash!

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMI T
FLUSH(A) 16 16 16 16 8
FLUSH(B) 16 16 16 16 16

How do we recover ?

Nothing to do!

49

Action t MemA | MemB 1~ ~kB | REDO Log
When must <START T>
READAY | 8 8 \ }t’;e dﬁzLC’? pages
t=tr2 16 8
WRITEAL | 16 16 8 8 <TA16> |
READBY) | 8 16 8 8 8
t=tr2 16 16 8 8 8
WRITEBH | 16 16 16 8 8 <TB,16> J
COMMIT <COMMIT T>
FLUSH(A) [1 116 16 16 16 8
FLUSH®B) [] | 16 16 16 16 16

50

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READALYL | 8 8 8 8
=t 16 8 8 8
WRITEAL | 16 16 8 8 <TA,16>
READBY | 8 16 8 8 8
=t 16 16 8 8 8
WRITEBYH | 16 16 1A R 8 <TB,16>
COMMIT NO-STEAL —£COMMIT T3
[FLusH@a) | 16 6 | 16 | 1w6——8 [
I F;LUSH(BD‘/M/ 16 16 16 16
RULE: dirty data writes after COMMIT

Recovery with Redo Log

After system crash, run recovery manager
1. Decide for each transaction T whether it is completed or not

* <START T>....<COMMIT T>.... =yes
* <START T>....<ABORT T>....... =yes
* <START T>...iiiiiiiiiiiins =no

2. Read log from the beginning, redo all updates of committed transactions

Again, this could be slow! Fix with checkpointing (later)

52

Recovery with Redo Log

<START T1>
<T1,X1,vi>
<START T2>
<12, X2, v2>
<START T3>
<T1,X3,v3>

<T3,X4,v4>
<T1,X5,v5>

<COMMIT T2>

Crash!

Committed transactions: T2

Do Nothing

Write v2 to X2 on disk

Do Nothing

Do Nothing
Do Nothing

53

Comparison Undo/Redo

- Undo logging:
* Dirty data page writes must be done early

* If <COMMIT T> is seen, T definitely has written all its data to disk (hence, don’t need to
undo)

- Redo logging
* Dirty data page writes must be done late

* If <COMMIT T> is not seen, T definitely has not written any of its data to disk (hence there
is no dirty data on disk)

54

Pro/Con Comparison Undo/Redo

- Undo logging: (Steal/Force)

* Pro: Less memory intensive: flush updated data pages as soon as log records are flushed, only then
COMMIT.

* Con: Higher latency: forcing all dirty buffer pages to be flushed prior to COMMIT can take a long time.

- Redo logging: (No Steal/No Force)
* Con: More memory intensive: cannot flush data pages unless COMMIT log has been flushed.

* Pro: Lower latency: don’t need to wait until data pages are flushed to COMMIT

55

LSNs pageLSNs flushedLSN
S

ARIES Log Records
prevLSN

* prevLSN is the LSN of the previous log record written by this XID

®* Sorecords of an Xact form a linked list backwards in time

Log Records, Pt 2

@ == D

LSNs pageLSNs flushedLSN
prevLSNs

* prevLSN is the LSN of the previous log record written by this XID

®* Sorecords of an Xact form a linked list backwards in time

LogRecord fields:

LSN
prevLSN

XID

type

pagelD
length

offset
before-image
after-image

update
records
only

Possible log record types:
* Update, Commit, Abort
* Checkpoint (for log maintainence)

* Compensation Log Records (CLRs)
* (for UNDO actions)

* End (end of commit or abort)

Log Records, Pt 3 i m

LSNs pageLSNs flushedLSN
prevLSNs

* Update records contain sufficient information for REDO and UNDO
* Our “physical diff” to the left works fine.

_ * There are other encodings that can be more
LogRecord fields: space-efficient

LSN
prevLSN

XID

type

pagelD
update | length

records | offset
before-image
only

after-image

Other Log-Related State

Transaction Table

* Two in-memory tables: | XID | Status | lastlSN
1 R 33

 Transaction Table

* One entry per currently active Xact. 2 C 42
« removed when Xact commits or aborts Dirtv Page Table

. Contains:
* XID 46 11
» Status (running, committing, aborting) 63 24

* lastLSN (most recent LSN written by Xact).

« Dirty Page Table

» One entry per dirty page currently in buffer pool.
« Contains recLSN

» LSN of the log record which first caused the page to be dirty.

ARIES Big Picture: W

LogRecords

LSN
prevLSN

XID

type

pagelD
length

offset
before-image
after-image

)

Data pages
each with a
pageLSN

Master record

nat’s Stored Where

Xact Table
xid
lastLSN
status

Dirty Page Table

pid
recLSN

Log tail
flushedLSN

Buffer pool

ARIES ; Berkeley l

* ARIES pieces together several techniques into a
comprehensive algorithm

Developed at IBM Almaden, by C Mohan

Several variations, e.g., for distributed transactions

But first, we need to discuss the concept of checkpoint

*Algorithms for Recovery and Isolation Exploiting Semantics

CheCprint R Berkeley [

* |dea: save the state the database periodically so that we don't
need to always process the entire log during recovery

e During a checkpoint:

Stop accepting new transactions

Wait until all current transactions complete (i.e., commit / abort)
Flush log to disk

Flush all dirty pages to disk

Write a <CKPT> log record, flush log again

At this point, changes by committed txns are written
to disk, and aborted txns have been rolled back

Resume transactions

Undo Recovery with Checkpointing Reskere

cs186

All txns here are completed
~ No need to recover
Can truncate this part of the log

<T9,X9,v9>

During recovery, (all completed)
Stop at first <CKPT> | <CKPT>
<START T2> _
<START T3>
<START T5>
<START T4>

<T1,X1,v1> Txns T2,T3,T4,T5 need to be

<T5,X5,v5> recovered
<T4,X4,v4>

<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Fuzzy Checkpointing "Berkeley l

* Problem: database freezes during checkpoint
* Not accepting any new transactions!

* Want DB to keep process txns during checkpoint

* |dea: fuzzy checkpointing

« Save state of all txns and page statuses

* Some txns can be running and dirty pages not flushed
yet!

 Need data structures to store such info

Fuzzy Checkpointing: ldea L—Berkeley l

« Keep track of:

1. txn states (running, committing, etc) — this is the Xact Table

2. dirty pages and which txn’s action first caused page to become
dirty — this is the Dirty Page Table

« Save 1 and 2 to disk during checkpoint

* Atrecovery:
* Re-create 1 and 2 from the log
« Re-create running txns and dirty pages in memory
* Replay rest of the log (will see what this means)

Fuzzy Checkpointing: Data Structures m

| Berkeley

* Each log record has a Log Sequence Number
(LSN)

* A unique integer that’s increasing (e.g., line
number)

- Each data page has a Page LSN
. The LSN of the most recent log record that
updated that page.

Fuzzy Checkpointing: Data Structures

Dirty pages table

pagelD recLSN
P5 102
P6 103
P7 101

Transactions

txnID |lastLSN | Status
T100 104 commit
T200 103 abort

Berkeley

cs186

Dirty Page Table
 Lists all dirty pages

» For each dirty page: recoveryLSN (recLSN) =
first LSN that caused page to become dirty

Transactions Table
e Lists all txn’s and their statuses

« For each txn: lastLSN = its most recent update
LSN (if active)

Fuzzy Checkpointing: Data Structures

Log (WAL)
LSN | prevLSN txnID pagelD | Log Payload
101 T100 START
102 T200 START
103 102 T200 P6 <old val, new val>
104 101 T100 P5 <old val, new val>

* Write ahead log

» Store both old and new values in update records
* New field prevLSN = LSN of the previous log record written by this txnID

* Actions of a transaction form a linked list backwards in time

Ber

keley

cs186

Fuzzy Checkpointing Example

Dirty pages table (DPT)

pagelD recLSN
P5 102
P6 103
P7 101

Transactions

txnID |lastLSN | Status
T100 104 commit
T200 103 abort

Berkeley
Log (WAL) |

LSN | prevLSN | txnID pagelD |Payload
101 |- T100 P7 START

102 |- T200 P5 START

103 | 102 T200 P6 6, 21

104 | 101 T100 P5 39, 100

Buffer Pool

P5

PagelLSN=104

P6
PageLSN=103

P7

PageLSN=101

Fuzzy Checkpointing: Protocol rerkeley l

Dirty pages table (DPT)

pagelD recLSN
P5 102
P6 103
P7 101

Transactions

txnID |lastLSN | Status
T100 104 commit
T200 103 abort

Write a <BEGIN CKPT> to log
Flush log to disk

Continue normal operation

When DPT and Transactions
tables are written to the disk,
write <END CKPT> to log

Flush log to disk

ARIES Normal Operation

What to do when a transaction:

Starts

Updates a page
Commits
Aborts

What to do when buffer
manager:

 FETCH a page from disk
 FLUSH a page to disk

Transactions

Berkeley
I txnID lastLSN | Status cs186
|T100 101 running |
Log (WAL)
LSN IprevLSN txnIiD pagelD | Payload I
101 I T100 |P7 1,5 I
Buffer Pool
P5 P6
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Transaction starts
* Write START record in Log
« Update Transactions table

Transactions

Berkeley
I txnID lastLSN | Status cs186
|T100 101 running |
Log (WAL)
LSN IprevLSN txnIiD pagelD | Payload I
101 I T100 |P7 1,5 I
Buffer Pool

P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Transaction starts
* Write START record in Log
« Update Transactions table

Ex: T105 starts
* Write <START,T105> in Log

« Add T105 in Transactions and
set lastLSN = null

Transactions

txnlD | lastLSN | Status LBerkeley
cs186
T100 101 running |
T105 running
Log (WAL)
LSN prevLSN txnIiD pagelD | Payload
101 T100 P7 1,5
102 T105 START
Buffer Pool
P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Transaction updates

* Write update record in Log

Update the following:

prevLSN=lastLSN
pageLSN=LSN
lastLSN=LSN
recLSN=if null then LSN

Transactions

Berkeley
I txnID | lastLSN | Status cs186
|T100 101 running |
Log (WAL)
LSN IprevLSN txnIiD pagelD | Payload I
101 I T100 |P7 1,5 I
Buffer Pool

P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Transaction updates

* Write update record in Log
« Update the following:

Ex: T100 writes 10 in P7
* Write <T100,P7,5,10> in the Log

« Update other tables (see arrows)

prevLSN=lastLSN
pageLSN=LSN
lastLSN=LSN

recLSN=if null then LSN

New LSN: 102

Transactions

Berkeley
I txnID lastLSN Status cs186
I T100 102 running I
Log (WAL)
LSN prevLSN txnIiD pagelD | Payload
101 T100 P7 1,5
102 101 T100 P7 5,10
Buffer Pool

P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=102

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Page flushes
* Flush log up to (and incl.) pageLSN

* Remove page from Dirty Pages
Table and Buffer Pool

Ex: Buffer manager wants to
FLUSH(P7)

* Flush Log up to (and incl.) 101

 Remove P7 from Dirty Pages
Table and Buffer Pool

Transactions

Berkeley
I txnID lastLSN | Status cs186
|T100 101 running I
Log (WAL)
LSN IprevLSN txnIiD pagelD | Payload I
101 I T100 |P7 1,5 I
Buffer Pool

P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

ARIES Normal Operation

Transactions

Berkeley
I txnID lastLSN Status
Page ﬂUSheS |T100 101 running I
* Flush log up to (and |r.10I.) pageLSN Log (WAL)
: Remove page from Dlrty Pages LSN IprevLSN txnlD pagelD | Payload I
Table and Buffer Pool

101 I T100 |P7 1,5 I
Ex: Buffer manager wants to Buffer Pool 7
FLUSH(P7) | I
* Flush Log up to (and incl.) 101 |EggeLSN=__ bageLSN~... ‘

 Remove P7 from Dirty Pages
Table and Buffer Pool

Dirty pages table

pagelD

recLSN

ARIES Normal Operation

Page fetches

« Create entry in Dirty Pages
Table and Buffer Pool

Ex: Buffer manager wants
FETCH(P2)

« Create entry in Dirty Pages table
set recLSN = NULL

« Bring page into Buffer Pool

Transactions

Berkeley
I txnID | lastLSN | Status cs186
|T100 101 running I
Log (WAL)
LSN IprevLSN txnIiD pagelD | Payload I
101 I T100 | P7 1,5 I
Buffer Pool
I P2 |
P5 P6
| PageLSN-=... PagelLSN-=... ‘

Dirty pages table

pagelD

recLSN

P2

ARIES Normal Operation

Transaction commits

Write commit record to Log
Flush Log up to this entry
* Txn is now considered committed!
Update Transactions to commit
Write end record to Log
Update Transactions to complete

Recall we are using WAL!

Transactions

; Berkeley t

ItxnID lastLSN | Status |
|T1OO 102 running |
Log (WAL)
LSN prevLSN txnIiD pagelD | Payload
101 T100 START
102 T100 P7 1,5
Buffer Pool
P5 P6 P7
PageLSN-=... PagelLSN-=... PageLSN=101

Dirty pages table

pagelD

recLSN

P7

101

. Transactions
AR I ES N orm al O pe rat IoN | txnID lastLSN Status tBerke]ey '
I cs186

. . I T100 102 complete

Transaction commits
] Log (WAL)

EX: T1 OO COmmItS LSN prevLSN txnID pagelD Payload
 Write <COMM|T,T1 00> 101 _ T100 _ START
* Flush Log up to this entry 102 |- T100 | P7 1,5
« Update Transactions to commit 103 |- T100 |- COMMIT
* Write <END,T100> in the Log 104 |- T00 |- END

« Update Transactions to complete Buffer Pool

Dirty pages table

I pagelD recLSN I

ARIES Normal Operation

Transaction aborts

Write abort record to Log

Find first action to undo from lastLSN
Go to log and start undo changes

Write compensation record (CLR) to Log

* CLR’s undoNextLSN points to next record
to undo (part of the payload)

Follow prevLSN to retrace more (if any)
actions to undo

Once done, change Transactions to abort
Write end record to Log
Update Transactions to complete

Transactions

lastLSN

I txnID Status I Berkeley
cs186
IT1OO 103 running I :
Log (WAL)
LSN prevLSN txnIiD pagelD | Payload
101 T100 START
102 101 T100 P7 1,5
103 102 T100 P6 2,6
Buffer Pool

P5 P6 P7
PageLSN-=... PageLSN=103 PageLSN=102

Dirty pages table

pagelD

recLSN

P7

101

Transactions

ARIES Normal Operation ItxnID lastLSN Status I
|T100 455~ -Pummg—l Berkgllsgy

Ex: T100 aborts

« Write <ABORT,T100> to Log 107 complete
* From lastLSN, LSN 103 is first to undo Log (WAL)
* Undo 103 and write <CLR, 102, P6, 2> SN |prevLSN |txnID | pagelD | Payload

* 102 is the next record to undo 101 |- 7100 | - START
« Follow prevLSN, LSN 102 is next to undo'? |1V 1100 | P7 1.5
* Undo 102 and write <CLR, -, P7, 1> 10510 oo "o 20

* No more actions to undo! R o fEoRt

. 105 104 T100 P6 CLR, 102, P6, 2
« Change Transactions to abort
. 106 105 T100 | P7 CLR, -, P7, 1

* Write <END,T100> to Log I TS —— —

« Update Transactions to complete
Will see a better algorithm in a few slides!

ARIES Recovery Berkeley

« Start recovery from the last checkpoint

« Easy to recover with non-fuzzy checkpoints. Just roll forward!
« With fuzzy checkpoints, we now need to handle:

» Active transactions when checkpoint was taken

* Dirty pages that were not flushed to disk yet

* Main principles:
* Redo all actions before crash and bring DBMS to the exact state right when it
crashed
 Unroll changes from incomplete txns when crash occurred
* Log all undo changes to ensure changes are not undone

ARIES Recovery ﬂ Be_rkdey I

How to find
these two points .
in the log? Checkpoint
Log b 1 P (crash)

First write Txn T100 was Txn T100
by Txn T100 active here commits

REDO!

Txn T101 Txn T101 was Txn T101
starts active here still running

UNDO!

ARIES Recovery

Berkeley

cs186

Recovery from a system crash is done in 3 passes:
1. Analysis pass

« Recreate list of dirty pages and active transactions
2. Redo pass

« Redo all operations, even for those that were incomplete before crash
« Goal is to replay DB to the state at the moment of the crash

3. Undo pass

* Unroll effects of all incomplete transactions at time of crash
* Log changes during undo in case of another crash during undo

1. Analysis Phase § B_erkeley ‘

» Goal
* Determine point in log (firstLSN) where to start REDO
« Determine set of dirty pages when crashed
« ldentify active transactions when crashed

* Approach

* Rebuild transactions table and dirty pages table
* Recover these from the last checkpoint in the log

« Compute: firstLSN = smallest of all pages’ recoveryLSN

* This is the earliest point that a write was made to buffer pool that hasn’t
persisted yet

1. Analysis Phase ‘ Ble_rkgllsgy I

Log Checkpoint (crash)
>

Dirty

pages -- Where do we start
the REDO phase ?

Txn oD

status

1. Analysis Phase

Log Checkpoint

|

firstLSN=min(recLSN)

Start
REDO
from here!

Txn oD

status

Dirty
pages PagelD recLSN

(crash)

i. Berkeley l

2. Redo Phase ﬂ Be_rkeley l

Main principle: replay history

* Process Log forward, starting from firstLSN
* Read every log record sequentially
» Redo actions are not recorded in the log

2. Redo Phase: Details L—Berkeley !

For each Log entry record LSN: <T,P,old,new>

* Write new value to page P

* Only redo those that need to be redone
* How to determine that?

2. Redo Phase: Detalls

Berkeley

cs186

For each Log entry record LSN: <T,P,old,new>

« If Pis notin Dirty Page then don’t redo. How did this happen?
P was flushed to DB, removed from DPT before checkpoint
Then DPT flushed at checkpoint

 Pisin DPT, but recLSN > LSN, then don’t redo. How did this happen?
P was flushed to DB, removed from DPT before checkpoint
Then P was read in again and reinserted in DPT with larger recLSN

 P’s pageLSN on disk > LSN, then don’t redo. How did this happen?
« P was updated again and flushed to DB after this log record

e QOtherwise redo!

2. Redo Phase: Detalils S?Berkeley l

What happens if system crashes during REDO ?

We REDO again! Each REDO operation is
Idempotent. doing it twice is the as doing it once.

3. Undo Phase ﬂ Ble-rkeley l

- A simple solution:
. All active txns in the Transactions Table are “losers.”

. Just abort each loser transaction

- Problem?

- Lots of random 1I/O in the log following the chain of
prevLSNs (see earlier slide)

- Can we do this in one backwards pass of log?

3. Undo Phase ‘ Be_rkeley ‘

 Define ToUndo = set of lastLSN from the loser txns

 Get them from the transactions table

Transactions

txnID lastLSN Status
T100 103 complete
T101 104 running

3. Undo Phase: Detalls

Berkeley

cs186

While ToUndo not empty:
« Choose most recent (largest) LSN in ToUndo

« If LSNis a regular log record <T,P,old,new,prevLSN>:
* Undo action
* Write a CLR where CLR.undoNextLSN = LSN.prevLSN

* If prevLSN is not null then insert prevLSN into ToUndo
» otherwise, write end record in log (we have fully aborted the txn)

« IfLSNisa CLR record:
* Don'’t undo!
 Butif CLR.undoNextLSN not null, insert in ToUndo
» otherwise, write end record in log (we have fully aborted the txn)

We’re done when there are no more transactions to undo

We can use this algorithm to undo a single txn as well during normal operation

3. Undo Phase: Detalils SL—Berkeley l

What happens if system crashes during UNDO ?

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo

LOGGING

Normal Execution of an Xact

« Series of reads & writes, followed by commit or abort.
* For our discussion, the recovery manager sees page-level reads/writes
* We will assume that disk write is atomic.
 In practice, kind of tricky!
« STEAL, NO-FORCE buffer management, with Write-Ahead Logging.
» Update, Commit, Abort log records written to log tail as we go
« Transaction Table and Dirty Page Table being kept current
» PagelLSNs updated in buffer pool

» Log tail flushed to disk periodically in background
* And flushedLSN changed as needed

» Buffer manager stealing pages subject to WAL

Transaction Commit

* Write commit record to log.

* All log records up to Xact's commit record are flushed to disk.
* Guarantees that flushedLSN 2 lastLSN.
* Note that log flushes are sequential, synchronous writes to disk.
* Many log records per log page.

 Commit() returns.
* Write end record to log.

Simple Transaction Abort

* For now, consider an explicit abort of a Xact.
* No crash involved.
* We want to “play back” the log in reverse order, UNDQOing updates.
* Get lastLSN of Xact from Xact table.
* Write an Abort log record before starting to rollback operations
* Can follow chain of log records backward via the prevLSN field.

* Write a “CLR” (compensation log record) for each undone operation.

Note: CLRs are a different type of log record we glossed over before

Currently Undoing lastLSN(CLR)
PrevLsn=1234 undoNextLSN = 1234

Abort, cont.

* To perform UNDO, must have a lock on data!
* No problem!

« Before restoring old value of a page, write a CLR:
* You continue logging while you UNDQO!!

* CLR has one extra field: undonextLSN

» Points to the next LSN to undo
 i.e. the prevLSN of the record we'’re

* CLR contains REDO info

 CLRs never Undone
* Undo needn’t be idempoteni(>1 UNDO won'’t happen)
« But they might be Redone when repeating history
* (=1 UNDO guaranteed)

« At end of all UNDOs, write an “end” log record.

Idempotent: can be applied
multiple times without

changing the result beyond
the initial application

rrently undoing

lastLSN(CLR)
undoNextLSN = 1234
Xact Table, DPT

Currently Undoing
PrevLsn=1234

Checkpointing

* Conceptually, keep log around for all time.

* Performance/implementation problems...

* Periodically, the DBMS creates a checkpoint

* Minimizes recovery time after crash. Write to log:
* begin_checkpoint record: Indicates when chkpt began.
* end_checkpoint record: Contains current Xact table DPT

* . A*fuzzy checkpoint’. Other Xacts continue to run;

» So all we know is that these tables are after the time of the begin_checkpoint
record.

Store LSN of most recent chkpt record in a safe place

(master record, often block O of the log file).

CRASH RECOVERY

Crash Recovery: Big Picture

* Start from a checkpoint

* found via master record.

* Three phases. Need to do:

®* Analysis - Figure out which Xacts committed since
checkpoint, which failed.

* REDO all actions.
* (repeat history)

* Reconstruct state of the DB before crash

* UNDO effects of failed Xacts.

Oldest log rec.
of Xact active
at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

Recovery: The Analysis Phase

Re-establish knowledge of state at checkpoint.

via transaction table and dirty page table stored in the checkpoint

Scan log forward from checkpoint.

End record:

+ Remove Xact from Xact table
Update record:

» If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.
'End record:

« Add Xact to Xact table

+ setlastLSN=LSN

« change Xact status on commit or abort.

At end of Analysis...

For any Xacts in the Xact table in Committing state,:

* Write a corresponding END log record

« ...and Remove Xact from Xact table.
Now, Xact table says which xacts were active at time of crash.

* Change status of running xacts to aborting and write abort records
DPT says which dirty pages might not have made it to disk

Oldest log rec. =

of Xact active
at crash

Smallest

recLSN in dirty _x_
page table

after Analysis =

Last chkpt ~ —=

CRASH =

Oldest log rec. =
of Xact active . A

Phase 2: The REDO Phase

Smallest

recLSN in dirty _x_
page table

after Analysis =

We Repeat History to reconstruct state at crash:
* Reapply all updates (even of aborted Xacts!), redo CLRs.

Scan forward from log rec containing smallest recLSN in DPT. cras LV ¥
* Q: why start here? AR U

Last chkpt - 1
\

For each update log record or CLR with a given LSN, REDO the action unless:
» Affected page is not in the Dirty Page Table, or
» Affected page is in D.P.T., but has recLSN > LSN, or
« pageLSN (in DB) >= LSN. (this last case requires 1/O)
To REDO an action:
* Reapply logged action.
« Set pageLSN to LSN. No additional logging, no forcing!

Oldest log rec. =
of Xact active . A

Scenarios When We Do Not REDO

Smallest

recLSN in dirty _x_
page table

after Analysis =

Given an update log record...
« Affected page is not in the Dirty Page Table. How did that happew *
» This page was flushed to DB, removed from DPT before checkpoint : 1 \

RASH —_

* Then DPT flushed to checkpoint AR U
» Affected page is in DPT, but has DPT recLSN > LSN. How?

« This page was flushed to DB, removed from DPT before checkpoint

» Then this page was referenced again and reinserted in DPT with larger recLSN
« pagelLSN (in DB) >= LSN. (this last case requires DB 1/0). How?

« This page was updated again and flushed to DB
after this log record

<

Phase 3: The UNDO Phase

A simple solution:

The xacts in the Xact Table are losers.

For each loser, perform simple transaction abort (start or
continue xact rollback)

Problem?

* Lots of random 1/O in the log following undoNextLSN chains.
* Can we do this in one backwards pass of log?

Next slide!

Oldest log rec. =
of Xact active
at crash

Smallest

recLSN in dirty _x_
page table

after Analysis =

Last chkpt -

CRASH -

A

R

Phase 3: The UNDO Phase, cont

toUndo = {lastLSNs of all Xacts in the Xact Table}
while !'toUndo.empty() :

thisLR = toUndo.find and remove largest LSN()
if thisLR.type == CLR:

if thisLR.undoNextLSN !'= NULL:
toUndo.insert (thisLR.undonextLSN)
else: // thisLR.undonextLSN == NULL

write an End record for thisLR.xid in the log

else:
if thisLR.type == UPDATE:
write a CLR for the undo in the log
undo the update in the database
if thisLR.prevLSN != NULL:
toUndo.insert (thisLR.prevLSN)
elif thisLR.prevLSN == NULL:

write an END record for thisLR.xid

Oldest log rec.
of Xact active
at crash

Smallest
recLSN in dirty
page table
after Analysis

Last chkpt

CRASH

—

>
X
c

Example of Recovery

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN _ LOG

00 ; begin_checkpoint

05 == end_checkpoint

10 — update: T1 writes P5

20 — update: T2

30 % T1 abort

40 . CLR: Undo T1 LSN 10

45 = T1 End

50 -:- update: T3 writes P1

60 = update: T2 writes P5
——CRASH, RESTART

«’

.. +prevLSNs

Using pencil and paper,
run the ARIES recovery
algorithm on this log,
assuming you have access
to a master record
pointing to LSN 05.
Maintain all the state on
the left as you go!

Example: Crash During Restart!

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN LOG . _
00,05 — begin_checkpoint, end_checkpoint

10 _,_ update: T1 writes P5
20 _,_ update T2 writes P3
30 = T1 abort
40,45 - CLR: Undo T1 LSN 10, T1 End
50 - update: T3 writes P1
60 : update: T2 writes P5
. CRASH, RESTART
70,80 _- T2 abort, T3 abort
90 _ CLR: Undo T2 LSN 60
100,105 -_CLR: Undo T3 LSN 50, T3 end
¢ CRASH, RESTART
110,115 . CLR: Undo T2 LSN 20, T2 end

Using pencil and paper,
run the ARIES recovery
algorithm on this log,
assuming you have access
to a master record
pointing to LSN 05.
Maintain all the state on
the left as you go!

undonextLSN

Additional Crash FAQs to Understand

Q: What happens if system crashes during Analysis?
A: Nothing serious. RAM state lost, need to start over next time.

Q: What happens if the system crashes during REDO?
A: Nothing bad. Some REDOs done, and we’ll detect that next time.

Q: How do you limit the amount of work in REDO?
A: Flush asynchronously in the background. Even‘hot” pages!

Q: How do you limit the amount of work in UNDQO?
A: Avoid long-running Xacts.

Summary of Logging/Recovery

* Recovery Manager guarantees Atomicity & Durability.
* Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.

* LSNs identify log records; linked into backwards chains per transaction (via
prevLSN).

* pageLSN allows comparison of data page and log records.

Summary, Cont.

* Checkpointing: Quick way to limit the amount of log to scan on recovery.
* Recovery works in 3 phases:

®* Analysis: Forward from checkpoint.
® Redo: Forward from oldest recLSN.

* Undo: Backward from end to first LSN of oldest Xact alive (running, aborting) after Redo.
* Upon Undo, write CLRs.
* Redo “repeats history”: Simplifies the logic!

