
Discussion 11
Parallel Query Processing

Announcements

Vitamin 11 (PQP) due Monday, April 15 at 11:59pm

Project 4 Part 2 (Concurrency) due April 10 at 11:59pm

Agenda

I. Types of Parallelism
II. Partitioning Schemes
III. Parallel Query Operators (Hashing, Sorting, Joins, etc.)
IV. Aggregation
V. Misc

Types of Parallelism

Types of Query Parallelism

● Inter-query parallelism works using queries as the unit of
parallelism
○ e.g. running 5 queries in parallel
○ covered later in the course

● Intra-query parallelism works within a single query
○ e.g. scanning two relations for a query in parallel
○ focus of this section

Types of Intra-query Parallelism

● Inter-operator parallelism works using operators as the
unit of parallelism
○ e.g. running two scans in parallel

● Intra-operator parallelism works within a single operator
○ e.g. speeding up a single scan by having multiple

threads or machines read different parts at the same
time

Inter-operator Parallelism

● Pipeline parallelism is inter-operator parallelism on
operators in a pipeline
○ e.g. projection applied on selection applied on scan:

selection depends on output of scan, and projection
depends on output of selection

Inter-operator Parallelism

● Bushy tree parallelism is inter-operator parallelism on
operators that don’t depend on each other
○ e.g. (A ⋈ B) ⋈ (C ⋈ D) - the two parenthesized joins don’t

depend on each other

Intra-operator Parallelism

● Partition parallelism is intra-operator parallelism that
works by partitioning the data and operating on partitions
in parallel

What is the difference between inter- and intra- query
parallelism?

Worksheet #1

What is the difference between inter- and intra- query
parallelism?

Inter-query parallelism operates between multiple queries,
rather than within a single query, whereas intra-query
parallelism operates within a single query (parallelism of the
operators that make up the query).

Worksheet #1

Partitioning Schemes

Network cost

● Network cost: the amount of data we need to send over the
network (from one machine to another) to perform an operation

● Units: usually KB
● Unlike I/O cost, we do not need to send data over the network in

units of pages - we can send, for example, one tuple’s worth of
data across the network.

Partitioning data

● Range partitioning on a key divides data based on which
range the key belongs to

● Hash partitioning divides data based on a hash function
● Round robin partitioning just cycles through the partitions

in order as data come in (not ordered based on a key)

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2 10 7 92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 0 KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2 10 7 92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 0 KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2 10 7 92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 0 KB

Assume the size of each
tuple is X KB.

Total network cost: 0 KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2 7 92 12 11m1

10

Assume the size of each
tuple is X KB.

Total network cost: X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7 92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 2X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 2X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92 12 11m1

Assume the size of each
tuple is X KB.

Total network cost: 2X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92

12

11m1

Assume the size of each
tuple is X KB.

Total network cost: 3X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92

12

11m1

Assume the size of each
tuple is X KB.

Total network cost: 3X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92

12 11

m1

Assume the size of each
tuple is X KB.

Total network cost: 4X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7

92

12 11

m1

Assume the size of each
tuple is X KB.

Total network cost: 4X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7 9

2

12 11

m1

Assume the size of each
tuple is X KB.

Total network cost: 5X KB

m2

m3

Assign data to 3 partitions
using range partitioning
[0, 4] → 1
[5, 9] → 2
[10, 14] → 3

Example: Range Partitioning

2

10

7 9

2

12 11

m1

Assume the size of each
tuple is X KB.

Total network cost: 5X KB

Example: Hash Partitioning

2 10 7 92 12 11m1

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

m2

m3

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

2 % 3 = 2

2 10 7 92 12 11m1

m2

m3

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

2 % 3 = 2

2

10 7 92 12 11

m2

m3

m1

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

10 % 3 = 1

10 7 92 12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

10 % 3 = 110

7 92 12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

7 % 3 = 110

7 92 12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

7 % 3 = 110 7

92 12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

2 % 3 = 210 7

92 12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

2 % 3 = 210 7

9

2

12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

12 % 3 = 010 7

9

2

12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

11 % 3 = 210 7

9

2

12 11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

11 % 3 = 210 7

9

2

12

11

m2

m3

m1

2

Example: Hash Partitioning

Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

9 % 3 = 010 7

9

2

12

11

m2

m3

m1

2

Example: Hash Partitioning

Example: Hash Partitioning
Assign data to 3 partitions
using hash partitioning
h(k) = k % 3

10 7

9

2

12

11

m2

m3

m1

2

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 10 7 92 12 11m1

m2

m3

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 10 7 92 12 11m1

m2

m3

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 10 7 92 12 11m1

m2

m3

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 7 92 12 11m1

m2

m3

10

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 7 92 12 11m1

m2

m3

10

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92 12 11m1

m2

m3

10

7

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92 12 11m1

m2

m3

10

7

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92 12 11m1

m2

m3

10

7

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92 11m1

m2

m3

10

7

12

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92 11m1

m2

m3

10

7

12

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92

11

m1

m2

m3

10

7

12

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92

11

m1

m2

m3

10

7

12

Assign data to 3 partitions
using round robin
partitioning

Example: Round Robin Partitioning

2 92

11

m1

m2

m3

10

7

12

Hash
hash function
divides data

Partitioning Comparison

2 2m1

m2

m3

Range
key divides data

by range

12 9

2

m1

m2

m3

10

2

7

2 92

11

m1

m2

m3

10

7

12

Round Robin
no key

10

7 9

12 11 11

Partitioning data

- Range: key divides data by range
- Hash: hash function divides data
- Round robin: no key

What are the advantages and disadvantages of organizing
data by keys?

Worksheet #2

What are the advantages and disadvantages of organizing
data by keys?

Advantages: because data is organized by keys, search and
update operations (which require searching on the key) can be
done more efficiently, since we have some sense of where the
data must be (if it exists).

Disadvantages: we must maintain the organization, which
adds overhead to insertions and updates.

Worksheet #2

All of the data for a relation with N pages starts on one machine, and we
would like to partition the data onto M machines.

How much data (in KB) would be sent over the network to partition the data
through each of the following: range, hash, and round-robin partitioning?

Assume that the size of each page is S (in KB). Also, assume we use
uniform hash functions and are able to construct ranges that have the
same number of values in them.

Worksheet #3a

How much data (in KB) would be sent over the network to partition the data
through each of the following: range, hash, and round-robin partitioning?

● The amount of data sent over the network for all three kinds of
partitioning will be the same, assuming uniform spread of the data
across the ranges and a uniform hash function.

● In this average case, each machine would get 1/M of the data so we
would need to send data to the other M-1 machines. The total amount
of data sent over the network is S ∗ N ∗ (M−1) / M KB.

Worksheet #3a

If there are no assumptions about hash functions or data ranges, what is
the best and worst case in terms of network I/O cost for the three
partitioning schemes?

Worksheet #3b

If there are no assumptions about hash functions or data ranges, what is
the best and worst case in terms of network I/O cost for the three
partitioning schemes?

For round-robin partitioning, the best/worst case is still S ∗ N ∗ (M−1) / M KB,
since the data will still be divided evenly.

For range and hash partitioning, the best case will be 0 KB, if all the data
stays on the current machine. The worst case will be S∗N KB, in the
scenario where the current machine retains no data and sends all of it to
the other machines.

Worksheet #3b

Parallel Query Operators

● Partition the data over machines with range partitioning
● Perform external sorting on each machine independently

(each machine holds a different range of data)

Parallel Sorting

● Partition the data for both relations over machines with
range partitioning
○ Use the same ranges for both relations

● Perform sort merge join on each machine independently

Parallel Sort Merge Join

● Use a hash function to partition the data over all the
machines (hash partitioning), then run external hashing on
each machine independently
○ Similar to recursive partitioning

Parallel Hashing

● Use hash partitioning on both relations, then perform a
normal hash join on each machine independently

Parallel Hash Joins

Phase 1:
Partition R and
S across
different
machines

Phase 2: Within
each machine,
perform local
(grace) hash
joins

● For both parallel sort-merge and hash joins, the sort or hash must
complete before completing the join!

● This “breaks” the pipeline
○ All machines need to stop and wait for all other machines to

finish sorting/hashing!
○ This coordination can be costly

● Is there a join algorithm that allows pipelining?

Join Pipelining

● Streaming hash join algorithm
○ Does not require all tuples of one relation to be available before

starting
■ Partitions for both R and S may come from multiple machines

- inefficient to wait for all of the partition to arrive before
joining

○ No writing to disk
○ Requires both R and S partitions to fit in memory (in B-1 pages)

■ Get more machines to make partitions small

Symmetric Hash Joins

● Basic idea: build two hash tables at the same time
● When a tuple from R arrives:

○ Probe hash table for S
○ Add the tuple into hash table for R

● When a tuple from S arrives
○ Probe hash table for R
○ Add the tuple into hash table for S

● Generates each joined tuple once
○ An output tuple is generated when both parts arrive

Symmetric Hash Joins

B=7

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

1

2

3

1

2

3

Output

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

1

2

3

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

B=7
1

2

3

1

2

3

Output

Assign colors to 3 partitions using
our hash function:
{P} → 1, {B} → 2, {R} → 3

Symmetric Hash Join Example:

Table R
partition 1

Table S
partition 1

Given m=3 machines with B=5 buffer pages each, along with
N=63 pages of data that don’t contain duplicates.

In the best case, what is the number of passes needed to sort
the data? (Range/hash partitioning counts as 1 pass)

Worksheet #4a

With m=3 machines, B=5 buffer pages each, N=63 pages of data that don’t contain
duplicates: in the best case, what is the number of passes needed to sort the data?

of passes to sort the data: (# of passes to partition the data) + (# of passes to sort each
partition)

1 pass: Range partitioning data (Best case: data is uniformly partitioned, so each machine gets
21 pages.)

3 passes: Executing external sorting on each machine
- Pass 1: 21 pages => 4 runs with 5 pages, 1 run with 1 page
- Pass 2: Merge together 4 runs at a time => 2 runs
- Pass 3: Merge together to get 1 run of sorted data

Overall: 4 passes

Worksheet #4a

With m=3 machines, B=5 buffer pages each, N=63 pages of data that don’t contain
duplicates: in the best case, what is the number of passes needed to sort the data?

Generally, it will take 1 +⎡1 + logB-1 ⎡N/mB⎤⎤passes to sort the data using parallel
sorting in the best case.

Worksheet #4a

What is the number of passes needed to hash the data?

Examine the best case scenario, where the data will be
uniformly distributed under the given hash functions.

Worksheet #4b

What is the number of passes needed to hash the data? Examine the best case
scenario, where the data will be uniformly distributed under the given hash
functions.

1 pass: Hash partitioning data (in best case, each machine gets 21 pages)

3 passes: Executing external hashing on each machine

- Pass 1: 21 pages => 4 partitions of ceil(21/4) = 6 pages each
- Pass 2: 4 partitions of 6 pages each => 16 partitions of 2 pages each
- Pass 3: Conquer phase, build in memory hash tables from partitions

Overall: 4 passes

Worksheet #4b

Assume that relation R has R pages of data, and relation S has
S pages of data. If we have m machines with B buffer pages
each, what is the number of passes in order to perform sort
merge join (in terms of R, S, m, and B) in the best case?

Consider reading over either relation to be a pass.

Worksheet #4c

Assume that relation R has R pages of data, and relation S has S pages of data.
If we have m machines with B buffer pages each, what is the number of passes
in order to perform sort merge join (in terms of R, S, m, and B) in the best case?
Consider reading over either relation to be a pass.

(1 pass/table to partition across machines) + (number of passes needed to
sort R) + (number of passes to sort S) + (1 final merge sort pass, going
through both tables)

2 + ⌈1 + logB-1⌈R/(mB)⌉⌉ + ⌈1 + logB-1⌈S/(mB)⌉⌉ + 2

Worksheet #4c

Can you use pipeline parallelism to implement this join (sort
merge join from part c)?

Worksheet #4d

Can you use pipeline parallelism to implement this join (sort
merge join from part c)?

No, the sorting pass must complete before the merge pass
can begin.

Worksheet #4d

● To calculate aggregate functions (e.g. SUM, COUNT), we
use hierarchical aggregation
○ Decompose aggregate into two parts: global and local
○ Apply local aggregate on each machine independently
○ Apply global aggregate on local aggregate values to

get final aggregated value

Parallel Aggregation

● To calculate aggregate functions (e.g. SUM, COUNT), we
use hierarchical aggregation
○ AVERAGE(col)

■ local function calculates both sum and count and
returns (Σ col, count(col))

■ global function takes these per-machine sums and
counts, and combines: Σ((Σ col) / Σ(count(col)))

Parallel Aggregation

● Sometimes, data is already partitioned
the way we want
○ May already be hash partitioned on

a key, or range partitioned on a key
○ If relation is already partitioned the

way we want, we don’t need to
repartition or send any data across
the network for that relation.

Asymmetric Shuffles

● Say we want to run Sort Merge Join on R and S
● R is already range partitioned over our m machines, and

we remember what ranges were used to partition R
● We do not need to repartition R
● We will partition S with the same ranges we used to

partition R and run SMJ locally on each machine

Asymmetric Shuffles

● Sometimes, one table is tiny
and one is huge
○ Assume the huge table is

not partitioned as we
would like

○ May be much cheaper to
send the entire tiny table
to each machine than to
partition the huge table

Broadcast joins

Relation R has 10,000 pages, round-robin partitioned across 4 machines
(M1, M2, M3, M4).

Relation S has 10 pages, all of which are only stored on M1. We want to join
R and S on the condition R.col = C.col.

Assume the size of each page is 1 KB.

What type of join would be best in this scenario, and why?

Worksheet #5a

Relation R has 10,000 pages, round-robin partitioned across 4 machines
(M1, M2, M3, M4).

Relation S has 10 pages, all of which are only stored on M1. We want to join
R and S on the condition R.col = C.col.

Assume the size of each page is 1 KB.

What type of join would be best in this scenario, and why?

Broadcast join, because it is cheaper to send relation S to every machine
rather than to partition R based on col.

Worksheet #5a

Relation R has 10,000 pages, round-robin partitioned across 4 machines
(M1, M2, M3, M4).

Relation S has 10 pages, all of which are only stored on M1. We want to join
R and S on the condition R.col = C.col.

Assume the size of each page is 1 KB.

How many KB of data must be sent over the network to join R and S?

Worksheet #5b

Relation R has 10,000 pages, round-robin partitioned across 4 machines
(M1, M2, M3, M4).

Relation S has 10 pages, all of which are only stored on M1. We want to join
R and S on the condition R.col = C.col.

Assume the size of each page is 1 KB.

How many KB of data must be sent over the network to join R and S?

The amount of data sent over the network is the amount of data required
to send all pages of S to every machine that does not have it (M2, M3, and
M4): 3 * 10 = 30 KB

Worksheet #5b

Relation R has 10,000 pages, round-robin partitioned across 4 machines
(M1, M2, M3, M4).

Relation S has 10 pages, all of which are only stored on M1. We want to join
R and S on the condition R.col = C.col.

Assume the size of each page is 1 KB.

Would the amount of data sent over the network change if R was hash
partitioned among the 4 machines rather than round-robin partitioned?
What if R was instead range partitioned? Assume each machine contains at
least 1 tuple of R after partitioning.

Worksheet #5c

Would the amount of data sent over the network change if R was hash partitioned among
the 4 machines rather than round-robin partitioned? What if R was instead range
partitioned? Assume each machine contains at least 1 tuple of R after partitioning.

● If using broadcast join, network cost would remain the same
○ Still need to send S to all machines where R’s tuples are located

● If R was hash partitioned, might be able to get lower network cost using
parallel Grace Hash Join (if we remember hash function used to partition R).
Note that this would be an asymmetric shuffle.

● If R was range partitioned, might be able to get lower network cost using
parallel Sort Merge Join (if we remember ranges used to partition R). Note
that this would be an asymmetric shuffle.

Worksheet #5c

Attendance Link

https://cs186berkeley.net/attendance

https://cs186berkeley.net/attendance

