
Distributed Transactions 
with 
Two-Phase Commit

R&G - Chapter 20



Distributed vs. Parallel?
• Earlier we discussed Parallel DBMSs

• Shared-memory
• Shared-disk
• Shared-nothing

• Distributed is basically shared-nothing parallel
• Perhaps with a slower network



What’s Special About 
Distributed Computing?
• Parallel computation
• No shared memory/disk
• Unreliable Networks

• Delay, reordering, loss of packets
• Unsynchronized clocks

• Impossible to have perfect synchrony
• Partial failure: can’t know what’s up, what’s down

“A distributed system is one in which 
the failure of a computer you didn't 
even know existed can render your 

own computer unusable”. 
— Leslie Lamport, Turing 2013



Distributed Database Systems
• DBMS an influential special case of distributed computing

• The trickiest part of distributed computing is state, i.e. Data
• Transactions provide an influential model for concurrency/parallelism
• DBMSs worried about fault handling early on

• Special-case because not all programs are written transactionally
• And if not, database techniques may not apply

• Many of today’s most complex distributed systems are databases
• Cloud SQL databases like Spanner, Aurora, Azure SQL
• NoSQL databases like DynamoDB, Cassandra, MongoDB, Couchbase…

• We’ll focus on transactional concurrency control and recovery
• You already know many lessons of distributed query processing



DISTRIBUTED LOCKING



Distributed Concurrency Control
• Consider a shared-nothing distributed DBMS
• For today, assume partitioning but no replication of data
• Each transaction arrives at some node:

• The “coordinator” for the transaction

T1



Where is the Lock Table
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked  (table, DB) exists across nodes

“Reserves”

“Sailors”“Boats”



Where is the Lock Table, Pt 2
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked (table, DB) exists across nodes
• These locks can be partitioned across nodes

“Sailors” “Boats”
“Reserves”



Where is the Lock Table, Pt 3
• Typical design: Locks partitioned with the data

• Independent: each node manages “its own” lock table
• Works for objects that fit on one node (pages, tuples)

• For coarser-grained locks, assign a “home” node
• Object being locked (table, DB) exists across nodes
• These locks can be partitioned across nodes
• Or centralized at a master node

“Sailors”
“Boats”

“Reserves”



Ignore global locks for a moment…
• Every node does its own locking

• Clean and efficient
• “Global” issues remain:

• Deadlock
• Commit/Abort



DISTRIBUTED DEADLOCK DETECTION



What Could Go Wrong? #1
• Deadlock detection

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3



What Could Go Wrong? #1 Part 2
• Deadlock detection

• Easy fix: periodically union at designated master
T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T3



DISTRIBUTED COMMIT: 2PC



What Could Go Wrong? #2
• Failures/Delays: Nodes

• Commit? Abort?
• When the node comes back, how does it recover in a world that 

moved forward?

×



What Could Go Wrong? #2, Part 2
• Failures/Delays: Nodes
• Failures/Delays: Messages

• Non-deterministic reordering per channel, interleaving across channels 
• “Lost” (very delayed) messages



What Could Go Wrong? #2, Part 3
• Failures/Delays: Nodes
• Failures/Delays: Messages

• Non-deterministic reordering per channel, interleaving across channels 
• “Lost” (very delayed) messages

• How do all nodes agree on Commit vs. Abort?



Basic Idea: Distributed Voting
• Vote for Commitment

• How many votes does a commit need to win?
• Any single node could observe a problem (e.g. deadlock, constraint violation)
• Hence must be unanimous.

T1

C(T1)



Distributed voting?  How?
• How do we implement distributed voting?!

• In the face of message/node failure/delay?

T1

C(T1)



2-Phase Commit
• A.k.a. 2PC.  (Not to be confused with 2PL!)

• Like a wedding ceremony!

• Phase 1: “do you take this man/woman...”
• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for yes!

• Phase 2: “I now pronounce you...”
• Coordinator disseminates result of the vote

• Need to do some logging for failure handling....



2-Phase Commit, Part 1
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)Prepare(T1)Prepare(T1)Prepare(T1)Prepare(T1)



2-Phase Commit, Part 2
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)

Prepare(T1)



2-Phase Commit, Part 3
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!

• Phase 2:
• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Prepare(T1)

Yes T1b

Yes T1d

Yes T1a

Yes T1c



2-Phase Commit, Part 4
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!

• Phase 2:
• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Yes T1bYes T1dYes T1aYes T1c



2-Phase Commit, Part 5
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)Commit(T1)Commit(T1)Commit(T1)Commit(T1)



2-Phase Commit, Part 6
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)

Commit(T1)

Commit(T1)

Commit(T1)

Commit(T1)



2-Phase Commit, Part 7
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Commit(T1)

Ack(T1d)

Ack(T1c)

Ack(T1b)

Ack(T1a)



2-Phase Commit, Part 8
• Phase 1:

• Coordinator tells participants to “prepare”
• Participants respond with yes/no votes

• Unanimity required for commit!
• Phase 2:

• Coordinator disseminates result of the vote
• Participants respond with Ack

C(T1)

Ack(T1d)Ack(T1c)Ack(T1b)Ack(T1a)



One More Time, With Logging
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Prepare(T1)

Log tail Log tail



One More Time, With Logging, Part 2
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Prepare(T1)

Log tail Log tail



One More Time, With Logging, Part 3
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

Prepare(T1)

Log tail
prepare(T1)



One More Time, With Logging, Part 4
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)



One More Time, With Logging, Part 5
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)



One More Time, With Logging, Part 6
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tail

yes(T1)

Log tail

prepare(T1)



One More Time, With Logging, Part 7
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

Log tailLog tail

prepare(T1)

commit(T1)



One More Time, With Logging, Part 8
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

prepare(T1)

Log tailLog tail
commit(T1)



One More Time, With Logging, Part 9
• Phase 1
• Coordinator tells participants to “prepare”
• Participants generate prepare/abort record
• Participants flush prepare/abort record
• Participants respond with yes/no votes
• Coordinator generates commit record
• Coordinator flushes commit record

C(T1)

prepare(T1) commit(T1)

Log tailLog tail



One More Time, With Logging, Part 10
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)

Commit(T1)

Log tailLog tail



One More Time, With Logging, Part 11
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)

Commit(T1)

Log tailLog tail



One More Time, With Logging, Part 12
• Phase 2:
• Coordinator broadcasts result of vote
• Participants make commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

og tailLog tail

prepare(T1) commit(T1)

Commit(T1)



One More Time, With Logging, Part 13
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Log tailLog tail



One More Time, With Logging, Part 14
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Ack(T1a)

Log tailLog tail



One More Time, With Logging, Part 15
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1)

Ack(T1a)

Log tailLog tail



One More Time, With Logging, Part 16
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

Log tailLog tail

prepare(T1) commit(T1)
Commit(T1)

end(T1)



One More Time, With Logging, Part 17
• Phase 2:
• Coordinator broadcasts result of vote
• Participants generate commit/abort record 
• Participants flush commit/abort record
• Participants respond with Ack
• Coordinator generates end record
• Coordinator flushes end record

C(T1)

prepare(T1) commit(T1)
Commit(T1) end(T1)

Log tailLog tail



Time

2PC In a Nutshell

Coordinator
Log

Participant
Log Prepare

Vote Yes/No

Commit/Abort

Ack on commit

prepare* or abort*
(with coord ID)

commit* or abort*
(commit includes all 

participant IDs)

commit* or abort*

end 

NOTE
asterisk*: wait for log flush

before sending next msg



RECOVERY AND 2PC



Failure Handling
• Assume everybody recovers eventually

• Big assumption!
• Depends on WAL (and short downtimes)

• Coordinator notices a Participant is down?
• If participant hasn’t voted yet, coordinate aborts transaction
• If waiting for a commit Ack, hand to “recovery process”

• Participant notices Coordinator is down?
• If it hasn’t yet logged prepare, then abort unilaterally
• If it has logged prepare, hand to “recovery process”

• Note
• Thinking a node is “down” may be incorrect!



Integration with ARIES Recovery
• On recovery

• Assume there’s a “Recovery Process” at each node
• It will be given tasks to do by the Analysis phase of ARIES
• These tasks can run in the background (asynchronously)

• Note: multiple roles on a single node
• Coordinator for some xacts, Participant for others



Integration with ARIES: Analysis
• Recall transaction table states

• Running, Committing, Aborting
• On seeing Prepare log record (participant)

• Change state to committing
• Tell recovery process to ask coordinator recovery process for status
• When coordinator responds, recovery process handles commit/abort 

as usual
• (Note: During REDO, Strict 2PL locks will be acquired)



Integration with ARIES: Analysis, cont
• On seeing Commit/Abort log record (coordinator)

• Change state to committing/aborting respectively
• Tell recovery process to send commit/abort msgs to participants
• Once all participants ack commit, recovery process writes End and 

forgets
• If at end of analysis there’s no 2PC log records for xact X

• Simply set to Aborting locally, and let ToUndo handle it.
• Same for participant and coordinator
• A.k.a. “Presumed Abort”

• There is an optimization called “Presumed Commit”



How Does Recovery Process Work?
• Coordinator recovery process gets inquiry from a “prepared”

participant
• If transaction table at coordinator says aborting/committing

• send appropriate response and continue protocol on both sides
• If transaction table at coordinator says nothing: send ABORT

• Only happens if coordinator had also crashed before writing commit/abort
• Inquirer does the abort on its end



Time

2PC In a Nutshell

Coordinator
Log

Participant
Log Prepare

Vote Yes/No

Commit/Abort

Ack on commit

prepare* or abort*
(with coord ID)

commit* or abort*
(commit includes all 

participant IDs)

commit* or abort*

end 

NOTE
asterisk*: wait for log flush

before sending next msg

Crash!

Crash!



Recovery: Think it through
• What happens when coordinator recovers?

• With “commit” and “end”?
• With just “commit”?
• With “abort”?

• What happens when participant recovers:
• With no prepare/commit/abort?
• With “prepare” and “commit”?
• With just “prepare?
• With “abort”?

Commit iff coordinator 
logged a commit



Recovery: Think it through, cont
• What happens when coordinator recovers?

• With “commit” and “end”? Nothing
• With just “commit”? Rerun Phase 2!
• With “abort”? Nothing (Presumed Abort)

• What happens when participant recovers:
• With no prepare/commit/abort? Nothing (Presumed Abort)
• With “prepare” & “commit”? Send Ack to coordinator.
• With just “prepare”?  Send inquiry to Coordinator
• With “abort”? Nothing (Presumed Abort)

Commit iff coordinator 
logged a commit



2PC + 2PL
• Ensure point-to-point messages are densely ordered

• 1,2,3,4,5…
• Dense per (sender/receiver/XID)
• Receiver can detect anything missing or out-of-order
• Receiver buffers message k+1 until [1..k] received

• Commit: 
• When a participant processes Commit request, it has all the locks it needs
• Flush log records and drop locks atomically

• Abort:  
• Its safe to abort autonomously, locally: no cascade.
• Log appropriately to 2PC (presumed abort in our case)
• Perform local Undo, drop locks atomically



Availability Concerns
• What happens while a node is down?

• Other nodes may be in limbo, holding locks
• So certain data is unavailable
• This may be bad...

• Dead Participants? Respawned by coordinator
• Recover from log
• And if the old participant comes back from the dead, just ignore it and tell it to recycle 

itself
• Dead Coordinator?

• This is a problem!
• 3-Phase Commit was an early attempt to solve it
• Paxos Commit provides a more comprehensive solution

• Gray+Lamport paper! Out of scope for this class.



Summing Up
• Distributed Databases

• A central aspect of Distributed Systems
• Partitioning provides Scale-Up
• Can also partition lock tables and logs
• But need to do some global coordination:

• Deadlock detection: easy
• Commit: trickier

• Two-phase commit is a classic distributed consensus protocol
• Logging/recovery aspects unique:

• many distributed protocols gloss over
• But 2PC is unavailable on any single failure
• This is bad news for scale-up, 

• because odds of failure go up with #machines
• Paxos Commit (Gray+Lamport) addresses that problem


