
Discussion 13
NoSQL

Announcements

Vitamin 13 (NoSQL) due Monday, April 29 at 11:59pm

Agenda

I. Background
II. CAP Theorem and BASE
III. Data Models
IV. JSON
V. MongoDB Query Language (MQL)

Background

Types of Workloads
● Online Transaction Processing (OLTP)

○ Simple lookup and update queries with few joins and aggregations
■ E.g. Updating the “status” attribute on your social media page

○ Workload involves high numbers of transactions by many users
■ E.g. Modern “Web 2.0” applications with lots of user-generated

content and user interactions
● Online Analytical Processing (OLAP)

○ Read-only queries that involve lots of joins and aggregations
○ Primarily used to support data-driven decision making

● OLTP and OLAP workloads are often handled by separate databases
○ OLTP data can be migrated to OLAP databases through a process called

Extract-Transform-Load (ETL)

Quick Summary Guide:

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

a.) A social media site with millions of users needs to track all the "likes"
and "dislikes" that each post receives.

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

a.) A social media site with millions of users needs to track all the "likes"
and "dislikes" that each post receives.

OLTP: OLTP workloads involve high numbers of transactions executed by
many different users. Queries in these workloads involve simple lookups
more often than complex joins. In this case, when a user likes or dislikes a
post, the site would need to do a lookup on that post and update its
likes/dislikes value.

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

b.) An online book store needs to aggregate and analyze its users book
purchases by genre over the last eight months.

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

b.) An online book store needs to aggregate and analyze its users book
purchases by genre over the last eight months.

OLAP: OLAP workloads involve read-only queries and typically include lots of
joins and aggregations. Often, workloads executed for analysis and decision
making are OLAP workloads. In this case, the book store needs to read from
data stored over the last eight months regarding book purchases, and may
need to perform some joins to analyze those purchases by genre.

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

c.) A multiplayer online game has added updated areas to its map and now
wants to assess how users behave in those areas, and how user playtime
has changed as a result.

Question 1: OLTP vs. OLAP

For each of these workloads, choose whether it's better characterized as
Online Transaction Processing or Online Analytical Processing:

c.) A multiplayer online game has added updated areas to its map and now
wants to assess how users behave in those areas, and how user playtime
has changed as a result.

OLAP: In this case, the game designers will need to read data that likely
includes which players logged in after the updated areas were released,
their average playtimes, and any other data that may be relevant to how
players behave in the new area.

Scaling

● To serve heavy workloads, a database needs to be scaled in one of two
ways:
1. Partitioning (aka Sharding): Split the data among multiple machines to

increase parallelism.
■ Writes are quicker because different machines can be updated

simultaneously. Reads are slower because they may need to
access multiple machines.

2. Replication: Copy the data among multiple machines to increase
fault-tolerance.
■ Writes are slower because data needs to be replicated. Reads are

faster because there are more copies of data to read.

Question 2: Scaling

a.) A small startup realizes that its current database can't sustain their
growing workloads. Given that these workloads involve a lot of writes but
few reads, should it invest in more partitioning or more replication?

Question 2: Scaling

a.) A small startup realizes that its current database can't sustain their
growing workloads. Given that these workloads involve a lot of writes but
few reads, should it invest in more partitioning or more replication?

Partitioning: More partitioning means that more queries can be executed
in parallel on different machines. This is especially good for write-heavy
workloads because these can often involve updates to only a few
machines, meaning more of them can happen at once (higher throughput).

Question 2: Scaling

b.) A mechanical failure causes some of the startup's database machines to
permanently crash, losing data in the process. If the startup wants to
prevent similar losses in the future, should it invest more in partitioning or
more replication?

Question 2: Scaling

b.) A mechanical failure causes some of the startup's database machines to
permanently crash, losing data in the process. If the startup wants to
prevent similar losses in the future, should it invest more in partitioning or
more replication?

Replication: Replication means each database machine is no longer a
single point of failure. Once data is replicated, the entire system is more
resilient to data loss because if one machine crashes, its data can be
recovered from the replicas. However, writes will become slower because
the changes have to propagate through all replicas.

CAP Theorem and BASE

Distributed Systems– Desired Properties

● In any distributed system we would like to maintain these three properties:
1. Consistency: Two clients making simultaneous requests to the

database should get the same view of the data.
■ Different from ACID consistency!

2. Availability: Every request must get a response. The only time it
should get an error is if the input itself is erroneous.

3. Partition Tolerance: The system must continue to operate even if
messages between machines are delayed or dropped or even if
certain machines get disconnected from the network. (i.e. Facebook
datacenter in Europe going down doesn’t bring everything down)

CAP Theorem
● CAP Theorem states that it is impossible for a distributed system to

provide more than 2 out of the 3 desired properties
● Practically speaking, most systems are designed to be partition tolerant

since networks are usually unreliable
○ Tradeoff is between consistency and availability
○ Choosing consistency over availability means the system responds

with a time-out if it cannot guarantee that the data is up to date
○ Choosing availability over consistency means the system may respond

with stale data
● In practice, many systems prioritize availability and provide eventual

consistency which guarantees that eventually, all replicas will be
consistent (i.e. once all updates stop, replicas will converge to same state)

BASE Semantics

● Eventually consistent systems opt for the 3 BASE guarantees instead of
ACID guarantees:
1. Basic Availability: reads and writes are available as much as possible;

however, they are not guaranteed to be consistent (i.e. a read may not
get the latest data and a write might not persist after all updates
propagate). This is up to the application to fix.

2. Soft State: a database can change even without inputs (e.g. as updates
propagate), so the application only has a probability of knowing its
state.

3. Eventually Consistent: given enough time (after all updates propagate),
all reads will be consistent.

Question 3: BASE

a.) Database designer Doug is annoyed with his distributed database
because for some time after issuing a write, all his reads return different
values. Does this violate any of the BASE properties?

Question 3: BASE

a.) Database designer Doug is annoyed with his distributed database
because for some time after issuing a write, all his reads return different
values. Does this violate any of the BASE properties?

No.

This is in fact the soft state and eventual consistency properties in action.
As the write propagates through the system, reads may return different
values because the database is inconsistent.

Question 3: BASE

Which properties of BASE do these scenarios violate?

b.) All reads and writes always have the same views of data, but they
sometimes respond to valid inputs with timeout errors.

Question 3: BASE

Which properties of BASE do these scenarios violate?

b.) All reads and writes always have the same views of data, but they
sometimes respond to valid inputs with timeout errors.

Basic Availability.

This database seems to prioritize consistency over availability. Since valid
inputs sometimes receive an error response, it violates basic availability.

Question 3: BASE

Which properties of BASE do these scenarios violate?

c.) Writes propagate to only 3 replicas, but the system has 5 replicas of
each piece of data.

Question 3: BASE

Which properties of BASE do these scenarios violate?

c.) Writes propagate to only 3 replicas, but the system has 5 replicas of
each piece of data.

Eventual Consistency.

Since writes do not propagate to all 5 replicas, different pieces of data will
always be stale on different replicas, so reads will never be consistent.

Question 3: BASE

Which properties of BASE do these scenarios violate?

d.) An empty database that has never been populated responds to a read
query on some specific key with the message "Error: key nonexistent!"

Question 3: BASE

Which properties of BASE do these scenarios violate?

d.) An empty database that has never been populated responds to a read
query on some specific key with the message "Error: key nonexistent!"

No properties are violated.

The basic availability property only guarantees that valid queries always
get a non-error response. However, since the database is empty, a read
query is invalid, so the error response is OK.

NoSQL Motivation

● The relational databases from class:
○ are better for OLAP workloads than OLTP workloads
○ struggle to scale due to

■ lack of partitioning and
■ RDBMS overhead that may be unnecessary for OLTP (e.g.

fancy query optimization)
● To better handle OLTP workloads and scale more efficiently, we can

simplify our data model to be less structured
○ This gives us the NoSQL data model!

NoSQL Data Models

Key-Value Stores
● Data model: (Key, Value) pairs

○ Key = String/Integer, unique for the entire data
○ Value = Can be anything (very complex object)

● Among the most flexible data models
● Operations:

○ get(key), put(key, value)

○ Operations on value are not supported due to flexibility of value type
● Distribution / Partitioning: (with a hash function)

○ No replication: key k is stored at server h(k)
○ Multi-way replication: e.g. key k stored at h1(k), h2(k), h3(k). On update,

propagate change to other servers, eventual consistency
● e.g. Amazon Dynamo, Voldemort, Memcached

Key-Value Stores Example
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

The Sales data can be represented in multiple ways as key, value pairs:
● Option 1: Key = sid, Value = entire Sales record
● Option 2: Key = date, Value = list of all Sales for that day
● Option 3: Key = customer, Value = list of all purchases of this customer
● Option 4: Key = (customer, product), Value = list of all purchases of this

product by this customer

Choose depending on your use case!

Key-Value Stores Q1a
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. Describe how the operation
get(sid1) would be executed. (Assume a Sale with sid1 exists in the data).

Key-Value Stores Q1a
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. Describe how the operation
get(sid1) would be executed. (Assume a Sale with sid1 exists in the data).
We must first hash the key, h(sid1), to find which partition the data is stored on.
Then we can retrieve the value from any of the replicas/servers.

Key-Value Stores Q1b
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. Describe how the operation
put(sid2, saleRecord) would be executed.

Key-Value Stores Q1b
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. Describe how the operation
put(sid2, saleRecord) would be executed.
We must first hash the key, h(sid2), to find which partition the data should be
stored on. Then, we will insert the record into that partition, and propagate the
change to the other replicas/servers. Note: Propagation of changes may not
happen immediately. We only need to enforce eventual consistency.

Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. After put(sid2, saleRecord) is
executed, is it guaranteed that every app will be able to access that new Sale
data?

Key-Value Stores Q1c

Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on
hash function h and replicated across 3 servers. After put(sid2, saleRecord) is
executed, is it guaranteed that every app will be able to access that new Sale
data?
No. Since we’re only enforcing eventual consistency, the changes from the put
operation may not have propagated to all replicas yet. Note: It is possible to
perform checks to see whether the replica an app is pulling data from is up-to-date,
if the app requires non-stale data. Requires communication with other replicas.

Key-Value Stores Q1c

Extensible Record Stores
● Aka Wide-Column Stores
● Data model: (like a 2-D key-value store)

○ Variant 1: key = rowID, value = record
○ Variant 2: key = (rowID, columnID), value = field

■ Can have multiple columnIDs in the key
● Compromise between structured relational model and flexible key-value store

○ Do not require each row in the table to have the same columns
● Operations:

○ get(key) or get(key, [columns]), put(key, value)
● e.g. HBase, Cassandra, PNUTS

Document Stores
● The value in key-value stores is often a very complex object due to the data

stores’ flexible nature
○ E.g. key = ‘2020/7/1’, value = [all sales for that date]

● Data Model:
○ Document: semi-structured data format (e.g. JSON, Protobuf, or XML)
○ Store documents in collections

● Document stores are among the most structured data models
○ Called a “document” but it’s just data

● e.g. SimpleDB, CouchDB, MongoDB

JSON

● JavaScript Object Notation: A text format widely adopted as a native
representation for many NoSQL databases (among many other use cases)

● Supported types:
○ Object: collection of key (string) - value (object/array/atomic) pairs

■ Denoted with “{“ and “}”
■ Should not have duplicate keys

○ Array: ordered list of values (object/array/atomic)
■ Denoted with “[“ and “]”

○ Atomic: a number (64-bit float), string, boolean, or null
● Can be interpreted as a tree due to its nested structure
● Self-describing: schema elements are part of the data itself, which allows each

document to have its own schema

JSON Overview

JSON vs Relational

JSON Relational

Flexibility Very flexible, can represent
complex structures and nested
data

Less flexible

Schema
Enforcement

Self-describing; Each
document can have unique
structure

Schema is fixed

Representation Text-based (easily parsed and
manipulated by many
languages)

Binary representation
(designed for efficient storage
and retrieval from disk)

“Enforcing schema on read” “Enforcing schema on write”

Relational → JSON
● Single table can be represented as an object where key: name of table

and value: array of objects
● Tip: Draw out a tree, then translate into JSON

name grade

Su Min 86

Sarah 55

Soumya 91

{“student”: [
 {“name”: “Su Min”, “grade”: 86},
 {“name”: “Sarah”, “grade”: 55},
 {“name”: “Soumya”, “grade”: 91}
]
}

Student

Student

name
“Su Min”

grade
86

grade
55

grade
91

name
“Sarah”

name
“Soumya”

Relational → JSON
For a many-to-many Relationship:
● Each relation as flat JSON array, or
● Inline relations based on keys (ex. Student → Classes Taken → Subjects

- put all subject info into each classes taken object, and put all classes
taken for a student into the student object)

name gpa

Su Min 3.0

Sarah 3.5

Student

name subject

Su Min Math

Su Min English

Sarah Math

Classes Taken

name teacher

Math Max

English Toby

Subjects

Relational → JSON
For a many-to-many Relationship:
● Each relation as flat JSON array, or
● Inline relations based on keys (ex. Student → Classes

Taken → Subjects - put all subject info into each
classes taken object, and put all classes taken for a
student into the student object)

name gpa

Su Min 3.0

Sarah 3.5

Students
name subject grade

Su Min Math A

Su Min English B

Sarah Math C

Classes Taken
name teacher

Math Max

English Toby

Subjects

{"Students": [
 {"name": "Su Min",
 "gpa": 3.0,
 "Classes Taken": [
 {"Subject":
 {"name": "Math",
 "teacher": "Max"},
 "grade": "A"},
 {"Subject":
 {"name": "English",
 "teacher": "Toby"},
 "grade": "B"}]},
 ...
]}

JSON → Relational

● Can be tricky because of variation in structure of documents
● No obvious “best” way to translate into relational

Example JSON Document that would be difficult to translate to a relational table

{“student”: [
 {“name”: “Su Min”, “grade”: 86,
 “address”: {“street”: “21 Milan St.”, “city”: “Berkeley”, “state”: ”CA”}},
 {“name”: “Sarah”, “grade”: 55,
 “address” : “12 Franklin St., Berkeley, CA”,
 “email”: “sk@berkeley.edu”},
]
}

Structure of “address” is inconsistent across data, and so is the schema!

JSON Q1

Convert the following relational table into a JSON document.

name debut goals

Tony 10/12/09 43

Katy 1/20/14 22

Players

Convert the following relational table into a JSON document.

JSON Q1

name debut goals

Tony 10/12/09 43

Katy 1/20/14 22

{“players”: [
 {“name”: “Tony”, “debut”: “10/12/09”,
 “goals”: 43},
 {“name”: “Katy”, “debut”: “1/20/14”,
 “goals”: 22}
]
}

Players

JSON Q2

Convert the following JSON document into two relational tables,
Players(name, debut) and Goals(name, goals).

{“players”: [
 {“name”: “Abby”, “debut”: “10/12/09”,
 “goals”: 43},
 {“name”: “Babby”, “debut”: “1/20/14”,
 “goals”: 22},
 {“name”: “Cabby”, “debut”: “1/21/14”,
 “goals”: 23}
]
}

JSON Q2

Convert the following JSON document into two relational tables:
Players(name, debut) and Goals(name, goals).

{“players”: [
 {“name”: “Abby”, “debut”: “10/12/09”,
 “goals”: 43},
 {“name”: “Babby”, “debut”: “1/20/14”,
 “goals”: 22},
 {“name”: “Cabby”, “debut”: “1/21/14”,
 “goals”: 23}
]
}

name debut

Abby 10/12/09

Babby 1/20/14

Cabby 1/21/14

Players

name goals

Abby 43

Babby 22

Cabby 23

Goals

MongoDB Query Language (MQL)

MQL Data Model

● Same as JSON – Stores documents which are dictionaries of
field:value pairs
○ E.g. Document = {Field_1: Value_1, Field_2:Value_2, ...}

● Each document has a special
“_id” field which represents its
primary key
○ Indexed
○ First attribute of each doc

MQL

● Operate on collections (i.e. input: collection, output: collection)
● Use dot (.) notation to construct queries

○ i.e. db.collection.operation1(...).operation2(...)
■ where collection is the name of the collection and

operation1/2 is the name of the actual operation
● SQL aggregates multiple tables in the FROM clause, but MQL typically

focuses on manipulating a single collection at a time

MQL Syntax

● Values in field:value pairs can be
○ Atomic
○ Nested document
○ Array of atomics
○ Array of nested documents

MQL Syntax– Dot (.) notation

● Dot (.) notation indexes into nested docs and arrays
○ “country.population” → population field within the country field

■ Only applies when country’s value is a nested doc or array of nested docs
● If it’s a nested doc, return the doc’s population field
● If it’s an array of nested docs, return an array of all the docs’

population fields
○ “shopping_list.1” → second element of shopping_list’s array

■ Applies when shopping_list’s value is an array
○ “shopping_list.1.price” → price field of second element of shopping_list’s array

■ Applies when shopping_list’s value is an array where each value is a
nested doc or array of nested docs

● Note: Dot expressions need to be in quotes!

MQL Syntax– Dollar ($) Notation

● $ indicates the string is a special keyword
○ E.g. $gt, $lte, $add

● Used in the “field” part of a “field:value” expression
● For example, if the $ keyword is a binary operator, it’ll be used as

{Left_Operand: {$keyword: Right_Operand}}
○ E.g. {“population”: {$gte: 1000}}

MQL Queries

● 3 main types of queries:
1. Retrieval– essentially SELECT-WHERE-ORDER BY-LIMIT queries
2. Aggregation– misnomer; in MQL it refers to a general pipeline of

operators
3. Updates

MQL: Retrieval Queries

MongoDB Query Language Relational Database Equivalent

find(<predicate>,
 optional <projection>)

SELECT <projection>
FROM Collection
WHERE predicate

limit(<integer>) LIMIT

sort(<list of fields>) ORDER BY

MQL Retrieval: find()

● find() Template:

db.collection.find(<predicate>, optional <projection>)

○ Both <predicate> and <projection> are expressed as documents {...}
● Note: db.collection.find({}) returns all documents

○ Remember to replace “collection” with the collection’s name

MQL Retrieval: find() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● find(<predicate>, optional <projection>)

○ find({status : “In Stock”}) → finds exact match → returns second document

○ find({seats:{“num”: 5, “type”: “leather”}}) → finds exact match including order
of fields → returns first document

MQL Retrieval: find() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● find(<predicate>, optional <projection>)

○ find({reviews : [5, 5]}) → finds exact match → returns nothing

○ find({reviews : 5, reviews : 4}) → finds anything that has both elements →
returns first document

MQL Retrieval: find() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● find(<predicate>, optional <projection>)

○ find({$or: [{car: “Honda”}, {status: “In Stock”}]}) → finds documents with car :
“Honda” or status : “In Stock” → returns both rows

MQL Retrieval: find() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● find(<predicate>, optional <projection>)

○ Use 1’s to indicate fields you want, OR use 0’s to indicate fields you don’t want
■ Can’t mix them UNLESS you use 1’s for fields you want and a 0 ONLY for the

“_id” field (it will be included by default otherwise)

MQL Retrieval: find() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● find(<predicate>, optional <projection>)

○ find({}, {car : 1, _id : 0}) → returns {“car” : “Honda”}, {“car” : “Audi”}

○ find({}, {car : 1}) → returns {“_id” : 1, “car” : “Honda”}, {“_id” : 2, “car” : “Audi”}

○ find({}, {car : 1, reviews : 0}) → returns Error (cannot mix 1’s and 0’s except for
with _id)

MQL Retrieval: limit() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● limit()

○ Like LIMIT in SQL

○ db.dealership.find({}).limit(1) → Returns 1 document

MQL Retrieval: sort() Examples

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “Sold”, “seats” : {“num”: 5, “type”: “leather”}, “reviews” : [5, 4, 5, 3, 1] }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “reviews” : [2, 4, 3, 4, 2] }

● sort()

○ Like ORDER BY in SQL

○ Input is list of fields, -1 means descending, 1 means ascending

○ db.dealership.find({}).sort({“reviews.0”:-1}).limit(2) → Returns both documents →
First the Honda, then the Audi

MQL Aggregation

● Aggregations are another way of querying MongoDB
○ Consist of a pipeline of stages where each stage manipulates the

collection in some way
■ Depending on which stages are used, an aggregation can also

do a retrieval

MQL Aggregation: Stage Types

● A stage can be one of the following types:
○ match – the first argument of find()
○ project – the second argument of find() (has more expressiveness)
○ sort – same as retrieval
○ limit – same as retrieval
○ group
○ lookup
○ unwind
○ more...

MQL Aggregation Syntax

● Aggregations are structured as

db.collection.aggregate([

{$stage1Op: {}},

{$stage2Op: {}},

…

{$stageNOp: {}}

])

MQL Aggregation: Grouping

Grouping is done with the $group operator:
$group : {

_id : <expression>, // Same as a relational GROUP BY
<field1> : {<aggregation_func1> : <expression1>},

…}

● The aggregation_func1 can be standard operations like $sum, $avg, $max
○ Some MQL specific ones include

■ $first: return first expression value per group
● makes sense only if docs are in a specific order [usually done after

sort]
■ $push: create an array of expression values per group
■ $addToSet: like $push, but eliminates duplicates

MQL Grouping Example

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “In Stock”, “seats” : {“num”: 5, “type”: “leather”}, “price” : 12.1 }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 15.2}

{“_id” : 2, “car” : “Audi”, “status” : “Sold”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 14.8}

db.dealership.aggregate([

{$group : {_id : “$status”, avgPrice : {$avg : “$price”}}},

{$match : {avgPrice : {$lte : 14}}

])

Note: remember to use
“$field_name” format
when referring to fields
in the values of the
$group stage.

MQL Grouping Example

> db.dealership.find()

{“_id” : 1, “car” : “Honda”, “status” : “In Stock”, “seats” : {“num”: 5, “type”: “leather”}, “price” : 12.1 }

{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 15.2}

{“_id” : 2, “car” : “Audi”, “status” : “Sold”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 14.8}

db.dealership.aggregate([

{$group : {_id : “$status”, avgPrice : {$avg : “$price”}}},

{$match : {avgPrice : {$lte : 14}}

])

Output:

{“_id” : “In Stock”,
“avgPrice” : 13.65}

MQL Aggregation: Lookup

● Lookup is the only way to do joins in MongoDB but it’s messy:

{$lookup : {

from : <collection to join>,

localField : <referencing field>,

foreignField : <referenced field>,

as : <output array field>

}}

● This query is essentially saying:
○ For each document in this

collection,
■ Find documents in the

“from” collection whose
“foreignField” matches
the “localField”

■ Put all these matching
documents into an array
in the calling document
under the “as” key

● Use $project afterward to clean up
the output if needed

MQL Aggregation: Lookup Example

 db.dealership.find()
{“_id” : 1, “car” : “Honda”, “status” : “In Stock”, “seats” : {“num”: 5, “type”: “leather”}, “price” : 12.1 }
{“_id” : 2, “car” : “Audi”, “status” : “In Stock”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 15.2}
{“_id” : 2, “car” : “Audi”, “status” : “Sold”, “seats” : {“num”: 7, “type”: “polyester”}, “price” : 14.8}

db.dealership.aggregate([
{$lookup : {from : “dealership”, localField : “status”, foreignField : “status”, as : “stock”},
{$project : {_id : 0, seats: 0, “stock._id” : 0, “stock.seats” : 0}}

])

Output:

{“car” : “Honda”, “status” : “In Stock”, “price” : 12.1, “stock” : [
{“car” : “Honda”, “status” : “In Stock”, “price” : 12.1, “stock”},
{“car” : “Audi”, “status” : “In Stock”, “price” : 15.2}

]}
...

MQL Updates

● Updates are the 3rd major type of MongoDB query
● Types of updates:

○ InsertOne/InsertMany
○ UpdateOne/UpdateMany
○ DeleteOne/DeleteMany

● The Many case is more general, so we’ll use that as an example

MQL Updates: insertMany

● Similar to an insert from relational databases
○ Insert list of documents into collections

● For example:

db.aquarium.insertMany([
{“fish” : “yellowtail”, “price” : “30”, status : “friend”},
{“fish” : “tuna”, “price” : 20, status : “food”}

])

○ Will create aquarium collection if needed
○ Will add _id attributes to each document since it doesn’t already exist
○ _id will be first field by default

MQL Updates: updateMany

● Syntax: db.Collection.updateMany({<Condition>}, {<Change>})
● Example:

db.aquarium.updateMany(
{price : {“$lt” : 35}},
{$set : {status : “food”}}

)

db.aquarium.find() → Output
 {“fish” : “yellowtail”, “price” : “30”, status : “food”},
 {“fish” : “tuna”, “price” : 20, status : “food”}

MQL Q1

Consider the following MongoDB collection teams.

(teamId: int, divisionId: int, stadiumCapacity: int, wins: int,
losses: int, coach: string, captain: string)

Write an MQL query to find the coach and captain of all teams from division 1 with
at least 10 wins, sorted by coach DESC and ties broken by captain ASC.

MQL Q1

Consider the following MongoDB collection teams.

Write an MQL query to find the coach and captain of all teams from division 1 with
at least 10 wins, sorted by coach DESC and ties broken by captain ASC.

db.teams.aggregate([
 {$match: {wins: {$gte: 10}, divisionId: 1}},
 {$sort: {"coach": -1, "captain": 1}},
 {$project: {"coach": 1, "captain": 1, "_id": 0}}
])

MQL Q2

Translate the following SQL query into an MQL query:

SELECT divisionId AS div, MAX(wins) AS maxWins
FROM teams
WHERE stadiumCapacity >= 20000
GROUP BY divisionId
ORDER BY MAX(wins), COUNT(*) DESC;

MQL Q2

Translate the following SQL query
into an MQL query:

SELECT divisionId AS div, MAX(wins)
AS maxWins
FROM teams
WHERE stadiumCapacity >= 20000
GROUP BY divisionId
ORDER BY MAX(wins), COUNT(*)
DESC;

db.teams.aggregate([
 { $match: {
 stadiumCapacity: {$gte: 20000}
 }},
 { $group: {
 _id: "$divisionId",
 maxWins: {$max: "$wins"},
 count: {$sum: 1}
 }},
 { $sort: {
 "maxWins": 1,
 "count": -1
 }},
 { $project: {
 div: "$_id", ← similar to aliasing in SQL
 _id: 0,
 maxWins: 1
 }}
])

Attendance Link

https://cs186berkeley.net/attendance

https://cs186berkeley.net/attendance

