= CS186 Projects

Your Tasks

Datatake

In this project you'll be working with a subset of the MovielLens Dataset. Unlike the data set you
worked on long ago in Project 1, the table here won't be organized in tables of records but rather
as collections of documents! Documents are similar to records in the sense that they are used to
group together pieces of data, but unlike the records we covered for SQL databases, documents
can have fields that are not primitive data types. For example, the following document has three

fields, two of which aren't primitive data types:

]

"dataA": 1, // a regular primitive data type

"anArray": [1,2,3], // an array!

"nestedDocument": $"dataB": 2, "dataC": 3% // a doc inside a doc!
§

The following section will introduce you to the dataset.

Understanding the Dataset

This section will be helpful to reference as you're completing the tasks. A nice way to get an
example of a record for any of the four collections (for example, ratings) is to call
db.ratings.findOne() inthe mongo shell.

$ mongo movies

MongoDB shell version v4.4.1

connecting to: mongodb://127.0.0.1:27017/movies?compressors=disabled&gssapiServi
Implicit session: session { "id" : UUID("cd49cd34-6c93-4548-aa20-bh57e9£45d975")
MongoDB server version: 4.4.1

> db.ratings.findOne()

]
"_id" : ObjectId("5fb32£37766efe011e6af587"),
"userId" : 1,
"movieId" : 783,
"rating" : 2,
"timestamp" : 1260759148
%

Movies Metadata

The movies_metadata collection contains documents with metadata for every movie in the
MovielLens Dataset. There are many possible fields in each document, but some you may find
useful for completing this project are:

movieId (int) :A unique identifier for the movie. Corresponds to the field of the same name
in keywords , ratings ,and credits .

title (string) : The title of the movie.
tagline (string) : A short phrase usually used to advertise the movie.
release_date (int) :The date of the film's release, as a UNIX Timestamp.

budget (inconsistent) : The movie's production budget in USD. See question 2iii for more
details on this field's type.

vote_average (number) : The average rating given by viewers on a scale from 0 to 10.
vote_count (int) : The total number of ratings given.
revenue (int) : The movie's revenue in USD
runtime (int) :The length of the movie in minutes
genres (array) :0 or more documents each containing the following:
name (string) :the name of one of the movie's genres

id (int) :aunique identifier for the genre

Example document:

// Extra fields omitted for brevity

]
"budget" : 30000000,
"genres" : [
s "id" : 16, "name" : "Animation" %,
{1 "id" : 35, "name" : "Comedy" %,
i "id" : 10751, "name" : "Family" }
1,
"release_date" : 815040000,
"revenue" : 373554033,
"runtime" : 81,
"status" : "Released",
"title" : "Toy Stoxy",
"vote_average" : 7.7,
"vote_count" : 5415,
"movieId" : 862,
"tagline" "
§
Keywords

The keywords collection contains documents with keywords related to certain movies. Each
document in the collection has the following attributes:

movieId (int) : A unique identifier for the movie. Corresponds to the field of the same name

in movies_metadata, ratings,and credits
keywords (array) :0 or more documents each containing the following:
id (int) : A unique identifier for a keyword

name (string) : A keyword associated with the movie, for example "based on novel",
"pirate”, and "murder".

Example document:

]
"keywords" : [
§ "id" : 3633, "name" : "dracula" %,
i "id" : 11931, "name" : "spoof" %
1)

"movieId" : 12110

Ratings

The ratings collection contains roughly 10,000 ratings submitted by specific viewers. Each
document consists of the following format:

userId (int) :A unique identifier for the user who gave the rating

movieId (int) :A unique identifier for the movie. Corresponds to the field of the same name

in movies_metadata , keywords ,and credits
rating (number) : The rating the user gave the movie, from 0 to 5.

timestamp (int) : UNIX timestamp of when this rating was given

]
"userId" : 1,
"movieId" : 9909,
"rating" : 2.5,
"timestamp" : 1260759144
§
Credits

The credits collection contains details on writers, actors, directors, and technicians who
worked on the production of the movies in the data set. Each document consists of the following:

movieId (int) : A unique identifier for the movie. Corresponds to the field of the same name

in movies_metadata, keywords ,and ratings

cast (array) : 0 or more documents of the each containing the following fields:
id (int) :Aunique identifier for the actor who played the character
character (string) :The name of the character in the movie
name (string) : The name of the actor as listed in the movie's credits

crew (array) : 0 or more documents each containing the following fields:
id (int) : Aunique identifier for the crew member
department (string) :The department the crew member worked in

job (string) : The job title of the crew member (e.g. "Audio Technician’, "Director")

name (string) : The name of the crew member as listed in the movie's credits

Example document:

// Extra fields for cast and crew omitted for brevity

]
"cast" : [
)
“character" : "Max Goldman",
"id" : 6837,
"name" : "Walter Matthau"
5,
// Other cast members
1,
"crew" : [
%
"department" : "Directing",
"id" : 26502,
"job" : "Directox",
"name" : "Howard Deutch",
5,
// Other crew members
1,
"movieId" : 15602
%

Building your first query

This task will walk you through step by step how to construct a query in MongoDB, and introduce
you to some helpful operations for use in the rest of the tasks. If you're already comfortable doing
queries in MongoDB feel free to skip to the end of this section to complete the corresponding

questionin query/q0.js .

Querying from the ratings collection

Inside the file query/q0.js you should see the following:

// Task O (Building your first query)

db.todo.aggregate ([
// TODO: Write your query here

1);

Try replacing the todo online 3 so that the line becomes db.ratings.aggregate([instead.
This tells mongo that we want to pull in documents from the ratings collection. Now try
running the the following in a terminal: python3 test.py q@ --view . This should run the query
and give something similar to the following output (note that the _id field will likely differ, which is
fine):

Showing up to the first 10 results of the query
{1 "_id" : ObjectId("5fbl1b4a82f9cebdc2acaea0"), "userId" : 1, "movieId" : 9909,
{ "_id" : ObjectId("5fbl1b4a82f9cebdc2acaeal"), "userId" : 1, "movieId" : 783, "

This query attempts to read every single document in the ratings collection, and would be
analogous to something like the following:

SELECT * FROM ratings;

Match

The query from the earlier section attempts to read every document in the ratings collections.
This next query will selectively match only specific documents matching a specific property.

db.ratings.aggregate ([
// Match documents with certain timestamps

]
$match: {
timestamp: %
$gte: 838857600, // >= 838857600
$1t: 849398400 // < 849398400
$
%
%

1);
It may be useful to see how this would look as a SQL query:
SELECT * FROM ratings WHERE timestamp >= 838857600 AND timestamp < 849398400;

After pasting in the new query into query/q0.js andrunning test.py g0 --view you should
see output resembling the following:

Showing up to the first 10 results of the query
1 "_id" : ObjectId("5fbl11b4a82f9cebdc2accl1b"), "userId" : 24, "movieId" : 400,
{1 "_id" : ObjectId("5fbl1b4a82f9cebdc2accllc"), "userId" : 24, "movieId" : 949,

Lets break down the query.

db.ratings.aggregate([...]) :This tells mongo that we'll be running an "aggregate"
operation. We can passinalist [...] known as the "pipeline", which will execute a series
of operations. Each operation in the pipeline is known as a "stage", and each stage operates on
the output of the previous stage.

{$match: ...%* :Thisisthe only element of the pipeline so far. This tells mongo that we want
documents from the collection that match certain properties, much like a WHERE clause.

ftimestamp: { $gte: ..., $1t: ...3%} :Thistells mongo that we only want documents
where the timestamp field has a value greater than or equal to 838857600 and less than
849398400 .

838857600 and 849398400 : The value inthe timestamp field is the number of seconds that
have elapsed since January 1, 1970. This is more commonly known as "Unix time", "POSIX
time", "Epoch time" or "UNIX Timestamp" and is a common way to represent times in computer
systems. The two timestamps we use in the query correspond to October 1st, 1996 and

December 1st, 1996 respectively.

There's no shortage of online tools like this one to convert between human readable times
and UNIX time.

If you've ever heard of rumors about the world ending in January, 2038, that has to do with
the way these timestamps are stored!

Group

Next we'll extend our pipeline to perform an aggregate similar to what we might attempt in SQL.

db.ratings.aggregate ([
// Match documents with certain timestamps
{$match: {timestamp: { $gte: 838857600, $1t: 849398400%%%,
// Perform an aggregation

]

$group: {
_id: "$movieId", // Group by the field movield
min_rating: $$min: "$rating"}, // Get the min rating for each group
max_rating: {$max: "$rating"}, // Get the max rating for each group
count: {$sum: 1% // Get the count for each group

%

%

1),

The equivalent SQL expression would look like the following:

SELECT
movieId as _id,
MAX(rating) as max_rating,
MIN(rating) as min_rating,
COUNT(x) as count
FROM ratings
WHERE timestamp >= 838857600 AND timestamp < 849398400
GROUP BY movield;

After pasting in the new query into query/q0.js andrunning test.py q0 --view :

"_id" : 1094, "min_rating" : 3, "max_zrating" : 3, "count" : 1 }
"_id" : 830, "min_rating" : 2, "max_rating" : 5, "count" : 2 %
"_id" : 474, "min_rating" : 2, "max_rating" : 5, "count" : 16 }
"_id" : 62, "min_rating" : 3, "max_rating" : 5, "count" : 12 %
"_id" : 64, "min_rating" : 3, "max_rating" : 3, "count" : 1 %

" id" : 231, "min_rating" : 1, "max_rating" : 5, "count" : 32 %

(s I e T e T e T o T e

A group "stage" in the pipeline always takes the following form:

]
$group:
]
_id: <expression>, // Group by the field or value in <expression>
<fieldl>: { <accumulatorl> : <expressionil> %,
. // as many copies of the above as you want

In our above example, we grouped by the movielId field. To indicate that we were referring to a
field and not the string literal "movieId" we prefixedit $. After that we had three expressions
representing values we wanted to compute in the aggregate. The first two expressions computed
the min and max values of the rating field.

The last column looks a bit peculiar: count: {$sum: 1% . This assigns the count field to the
accumulated sum of the value 1 . This means we add together n copies of the value 1
where n is the number of documents in each group, giving the total count of documents in each

group.

Sort and Limit

Next lets try to see the top 10 movies with the most ratings. Continuing to build off our previous
query:

db.ratings.aggregate ([
// Match documents with certain timestamps
$$match: ftimestamp: § $gte: 838857600, $1t: 849398400%%%,
// Perform an aggregation

]
$group: {
_id: "$movieId", // Group by the field movield
min_rating: {$min: "$rating"}, // Get the min rating for each group
max_rating: {$max: "$rating"}, // Get the max rating for each group
count: {$sum: 1% // Get the count for each group
$
5,

// Sort in descending order of count, break ties by ascending order of _id
i$sort: fcount: -1, _id: 1%%,
// Limit to only the first 10 documents
1$1limit: 10%
1)

Our equivalent query in SQL now looks like:

SELECT
movieId as _id,
MAX(rating) as max_rating,
MIN(rating) as min_rating,
COUNT(x) as count
FROM ratings
WHERE timestamp >= 838857600 AND timestamp < 849398400
GROUP BY movieId
ORDER BY count DESC, _id ASC
LIMIT 10;

After pasting in the new query into query/q0.js andrunning test.py g0 --view :

{ "_id" : 480, "min_rating" : 2, "max_rating" : 5, "count" : 48 }
{1 "_id" : 356, "min_rating" : 1, "max_rating" : 5, "count" : 47 }
{ "_id" : 590, "min_rating" : 3, "max_rating" 5, "count" : 45 t
{1 "_id" : 457, "min_rating" : 3, "max_rating" 5, "count" : 44 %
{ "_id" : 296, "min_rating" : 1, "max_rating" 5, "count" : 42 %
$ "_id" : 592, "min_rating" : 2, "max_rating" : 5, "count" : 42 }
{1 "_id" : 150, "min_rating" : 2, "max_rating" : 5, "count" : 41 %}
$+ "_id" : 380, "min_rating" : 2, "max_rating" 5, "count" : 39 %
1 "_id" : 589, "min_rating" : 1, "max_rating" 5, "count" : 37 %
{ "_id" : 165, "min_rating" : 2, "max_rating" 5, "count" : 35 %
The sort stage always takes the following form:
3 $sort: § <fieldl>: <sort order>, <field2>: <sort order> ... % %

The fields refer to which field of the output to sort on. The sort order is always either 1 to
indicate ascending order or -1 for descending order.

The limit stage just needs to specify a number to limit the number of possible documents.

Lookup

Next, we'll do the equivalent of a join in a SQL database to figure out what movies we're the IDs
correspond to. Building again off the previous query:

db.ratings.aggregate ([

1);

// Match documents with certain timestamps
{$match: {timestamp: { $gte: 838857600, $1t: 849398400%%%,
// Perform an aggregation

]
$group: {
_id: "$movieId", // Group by the field movield
min_rating: $$min: "$rating"}, // Get the min rating for each group
max_rating: {$max: "$rating"}, // Get the max rating for each group
count: {$sum: 1% // Get the count for each group
%
5,

// Sort in descending order of count, break ties by ascending order of _id
i$sort: fcount: -1, _id: 1%%,

// Limit to only the first 10 documents

i$1limit: 10%,

// Perform a "lookup" on a different collection

%
$lookup: {
from: "movies_metadata", // Search inside movies_metadata
localField: "_id", // match our _id
foreignField: "movieId", // with the "movieId" in movies_metadata
as: "movies" // Put matching rows into the field "movies"
%
§

Normally this is where we would put the expected output, but if you tried it out yourself you should

know it looks like a complete mess! It may help to look at a single formatted document here. Try

running python3 test.py 0@ --format , which should give a cleaned up version of the first

document returned by the query:

"_id" : 480,
"min_rating" : 2,
"max_rating" : 5,
"count" : 48,
"movies": [// Notice that "movies" is an array!
%
"title": "Some Movie",

"budget": 123456789,
// Full contents of a document from
// movies metadata

There are two things to note here:

The "movies" field corresponds to an array of matching documents, not a single document. If
there were multiple documents in movies_metadata with a matching id, they would all appear
in that list. If there were no matching documents, movie would map to an empty list.

The contents of movie are entire documents. In SQL this would be like having an entire record
stored in a single column! As the name NoSQL implies though, we're not bound to the rule of
SQL that all values must be atomic, and so we're allowed to have this nested structure.

Project

The result of the last query was a bit messy, so lets do some cleaning up. We'll create a new field,
name ,to store the name of the movie, rename count and get rid of the column field _id .

db.ratings.aggregate ([
// Match documents with certain timestamps
{$match: {timestamp: { $gte: 838857600, $1t: 849398400%%%,
// Perform an aggregation

]
$group: {
_id: "$movieId", // Group by the field movield
min_rating: $$min: "$rating"?, // Get the min rating for each group
max_rating: {$max: "$rating"}, // Get the max rating for each group
count: {$sum: 1% // Get the count for each group
%
5,

// Sort in descending order of count, break ties by ascending order of _id
i$sort: $count: -1, _id: 1%%,

// Limit to only the first 10 documents

{$1imit: 10%,

// Perform a "lookup" on a different collection

1
$lookup: {
from: "movies_metadata", // Search inside movies_metadata
localField: "_id", // match our _id
foreignField: "movieId", // with the "movieId" in movies_metadata
as: "movies" // Put matching rows into the field "movies"
%
EE
1
$project: {
_id: 0, // explicitly project out this field
title: {$first: "$movies.title"?, // grab the title of first mov
num_ratings: "$count", // rename count to num_ratings
max_rating: 1,
min_rating: 1
%
$

1);

After pasting in the new query into query/q0.js andrunning test.py q0@ --view :

-- Note that the closest equivalent to $lookup is a LEFT OUTER JOIN, not an
-- INNER JOIN!
SELECT
MAX(rating) as max_rating,
MIN(rating) as min_rating,
m.title as title,
COUNT (%) as num_ratings
FROM ratings as r LEFT OUTER JOIN movies_metadata as m ON r.movield = m.id
WHERE timestamp >= 838857600 AND timestamp < 849398400
GROUP BY r.movield
ORDER BY num_ratings DESC, r._id ASC
LIMIT 10;

A few things to note here:

The 0's and 1's stand for "drop" and "keep" respectively, i.e. "_id" gets dropped because its
corresponding value in the project was 0.

To get the title of the first movie in the "movies" array we used {$first: "$movies.title"? .
Weused .title toaccessthe title attribute of each documentin movies . Try running
the query without the $first operator ("title": "$movies.title") and see what
happens.

You can rename columns using a project.

You should now see some output that looks like this:

{1 "min_rating" : 2, "max_rating" 5, "title" : "Jurassic Park", "num_ratings"

{+ "min_rating" : 1, "max_rating" 5, "title" : "Forrest Gump", "num_ratings"

{1 "min_rating" : 3, "max_rating" 5, "title" : "Dances with Wolves", "num_ratin
{ "min_rating" : 3, "max_rating" 5, "title" : "The Fugitive", "num_ratings"

1 "min_rating" : 2, "max_rating" 5, "title" : "Batman", "num_ratings" : 42 %

1+ "min_rating" : 1, "max_rating" 5, "title" : "Pulp Fiction", "num_ratings"

{1 "min_rating" : 2, "max_rating" 5, "title" : "Apollo 13", "num_ratings" : 41
{1 "min_rating" : 2, "max_rating" 5, "title" : "True Lies", "num_ratings" : 39
{1 "min_rating" : 1, "max_rating" 5, "title" : "Terminator 2: Judgment Day", "n
{1 "min_rating" : 2, "max_rating" 5, "title" : "Pretty Woman", "num_ratings"

Congrats, you've built your first query! You can run python3 test.py q@ to testthatthe provided
solution works. This section may seem a bit intimidating, but its mostly there for you to reference
back to as you work through the remaining tasks.

Your Tasks

Note on grading: question 0 and the questions in Task 1 are worth 1 point each, while the
questions in Tasks 2 and 3 are worth 2 points each.

Task 1: Basics

i. After spending over a year social distancing, you find yourself reading a lot of marvel comics
and watching a lot of Disney movies. Find the IDs of all movies labeled with the keyword "mickey
mouse" or "marvel comic" by writing a query on the keywords collection. Order your output in
ascending order of movieId . The output documents should have the following fields:

$"movieId": <number>?

Hint: start by trying to find movields labeled with just "mickey mouse", then use the Sor
operator to match documents with either of the labels.

Hint: you may find the SelemMatch operator useful here to select the appropriate documents.
For example, the following query would match any movie with English listed as one of its
spoken languages:

db.movies_metadata.aggregate ([
// Use elemMatch in the $match stage to find movies with English
// as a spoken language
i$match: {spoken_languages: {%$elemMatch: {name: "English"}3%:%,
i$project: {title: 1, _id: 0%}t // clean up output
1

ii. We're interested in the best comedy films to watch. Return the id, title, average vote, and vote
count of the top 50 comedy movies ordered from highest to lowest by average vote, breaking ties
by descending order of vote count, and any further ties in ascending order of movieId . Only
include movies with 50 or more votes. The output documents should have the following fields:

"title" : <string>,
"vote_average" : <number>,
"vote count" : <number>,
"movieId" : <number>

Useful operators: SelemMatch, Sgte for matching

Hint: genre names are case sensitive!

iii. Do movies get more good reviews than bad reviews? Is it the other way around? We want to
know! For each possible rating find how many times that rating was given. Include the rating and
the number of the times the rating was given and output in descending order of the rating. The
output documents should have the following fields:

"count": <numbezr>,
"rating": <number>

Hint: the building your first query section gives an example of how to get a count

iv. You've discovered a critic who always seems to know exactly which movies you would love and
which ones you would hate. Their true name is a mystery, but you know their userid: 186 . Find
critic 186's flve most recent movie reviews, and create create a document with the following
fields:

1
"movieIds": [most recent movieId, 2nd most recent, ... , 5th most recent],
"ratings": [most recent rating, 2nd most recent, ..., 5th most recent],
"timestamps": [most recent timestamp, 2nd most recent, ... , 5th most recent
§

Useful operators: Look into the Spush operator

Hint: You may find it helpful to see what happens when you group by null.

Task 2: Movie Night

i. The TAs are having a movie night but they're having trouble choosing a movie! Luckily, Joe has
read about IMDb's Weighted Rating which assigns movies a score based on demographic
filtering. The weighted ranking (WR) is calculated as follows:

WR = ()R + (-2)C

v+m v+m

v is the number of votes for the movie
m is the minimum votes required to be listed in the chart
R is the average rating of the movie (this is stored in the field vote_average)

(' is the mean vote across the whole report. For the purposes of this question this value is
approximately 7, which you can hardcode into your query.

We would like to set a minimum number of votes to make sure the score is accurate. For this
question we will assume the minimum votes required to be listed is 1838. Return the 20 highest
rated movies according to this formula. The output should contain three fields: title with the
title of the movie, vote_count with the number of votes the movie received, and score which
contains the WR for the associated movie rounded to two decimal places. How many movies can
you recognize on this list? Sort in descending order of score , and break ties in descending order
of vote_count and ascending order of title . Your output documents should have the
following fields:

]
"title": <string>,
"vote_count": <number>,
"score": <number>

%

Useful operators: Look up what the $add , $multiply , $divide ,and $round operators do
(you may find this question reminiscent of Scheme from 61a!)

ii. The TAs consider the prospect of making their own feature film on the beauty and joy of
databases, and want to think of a catchy tagline. Run the following to see some examples
taglines:

db.movies_metadata.aggregate({$project: {"_id": 0, "tagline": 1%3%)

Notice how the second one is "Roll the dice and unleash the excitement!" We want to see the 20
most common words (length > 3) across all taglines in descending order. In order to do this, we

would need to split our sample tagline into its constituent words ("Roll", "the", "dice", "and",
"unleash’, "the", "excitement!").

To make things interesting, we will limit the words to length >3 to remove filler words,
prepositions, and some pronouns (in the previous example, remove "the" and "and"). We also want
to trim off any surrounding punctuation (periods, commas, question marks, or exclamation
points) in a word and set all words to lowercase (our final set of words that will be included in our
table for our example tagline is "roll, "dice", "unleash’, "excitement’, without the exclamation mark).
Do not trim off any other punctuation character that is not mentioned. Order your output by

descending order of count . Your output documents should have the following fields:

" id": <string>,
"count": <number>

Can you guess what the most popular words might be?

Hint: Look up the $unwind stage to see what it does.
Useful operators:

Ssplit can be used to convert a string to an array. For example splitting the string "a proper
copper coffee pot" by " "

(a space) will create the array ['a", "proper", "copper”, "coffee", "pot"]
StoLower converts a string to lowercase
Strim can be used to trim off surrounding punctuation marks

SstrLenCP can be used to get the length of a string. Make sure to check for length after
removing punctuation marks!

iii. How much does it cost to make a movie? The TAs were hoping to write a query for this but
realized something that will haunt them for the rest of their lives... Mongo's lack of schema
requirements means that the budget field of documents metadata isn't always an integer! Even
worse, sometimes the field doesn't even exist! It looks like whoever prepared the data set always
did one of the following:

If they didn't know the budget of a given movie they did one of the following:
Set the budget fieldto false
Set the budget fieldto null

Set the budget field to an empty string: ""

Excluded the budget field from the document
If they did know the budget of a given movie they did the following:
Set the budget field to a number value, for example 186
Set the budget field to a string with prefix $, for example "$186"

Set the budget field to a string with the the postfix "USD", for example "186 USD"

Group the budgets by their value rounded to the nearest multiple of ten million, and return the
count for each rounded value. Additionally include an extra group "unknown" for the count of
movies where the budget was not known. Order by ascending order of rounded budget. Your
output documents should have the following fields:

"budget": <number or "unknown">,
"count": <number>

Useful operators: You may find the following useful: Sne, Sand, Scond, SisNumber, Stolnt and
Sround. Trim will also be useful here for removing prefixes and postfixes.

Hint: You can check if a field is present in a document by checking whether the field is equal to

undefined

Task 3: Paparazzi

i. Comic book writer Stan Lee was known to make cameos in film adaptations of his works. Find
the release date, title, and the name of the character Lee played for every movie Lee has appeared
in. Order the results in descending order of release date. Your output documents should have the
following fields:

1
"title": <string>,
"release_date": <number>,
“character": <string>

%

Useful operators: you may find Sunwind (used in 2ii) handy here

Hint: Stan Lee's id in the credits collection is 7624 .

ii. Director Wes Anderson is known for his unique visual and narrative style, and frequently
collaborates with certain actors. Find the 5 actors who have appeared the most often in movies
where Anderson is listed on the crew with the title "Director”. Your output should include the
actor's name, id, and the number of times the actor has collaborated with Anderson. Order in
descending order of the number of collaborations. Break ties in ascending order of the actor's id.
Your output documents should have the following fields:

]
"count": <number>, // number of times collaborated
"id": <string>,
“name": <string>

§

Hint: Wes Anderson's id in the credits collection is 5655 . To get started, try to match all
documents in credits where he is listed as the director.

Hint: Like the above question, Sunwind can be useful here.

Hint: You may need to group by multiple fields for this question. For example,
$$group: _id: fvall: "$field.vall", val2: "$field.val2":} will group documents by
both val1 and val2, similar to how the expression GROUP BY vall, val2 wouldin SQL.

You're done!

Congrats, you're finished with the last project! There are no hidden tests for this assignment, so
whatever score you see on the autograder after this will be your score on this assignment. Follow
the instructions in the next section to submit your work.

Testing Tips

Running Queries

You can run your answers through mongo directly by running mongo movies to open the
database and then entering your query directly:

$ mongo movies
db.replace_with_a_collection.aggregate([... your query ...])

This can help you catch any syntax errors in your queries. Alternatively you can run a query
directly through the testing script by pasting in your query into the appropriate file (we'll use

query/q0.js as an example) and running python3 test.py g0 --view . This will print up to
ten of the query's results.

You can request more results with the --batch_size flag (i.e.
python3 test.py O --view --batch_size 20 will give the first twenty results).

Formatting output

If you find yourself dealing with large, hard to read documents, you can view a formatted version
of the first document by using --format instead of --view . For example, using the provided
query from the Building your first query section of the spec:

$ python3 test.py g0 --format
Showing formatted first document of the query

]
"min_rating": 2,
"max_rating": 5,
"title": "Jurassic Park",
“num_ratings": 48

%

To run a test, from within the sp24-proj6-yourname directory:

$ python3 test.py # This runs all of the tests
$ python3 test.py 3ii # This would run tests for only g3ii

Format Matching

Before we run a full test on your output, we check that the format of your output matches what
we're expecting. Format in this context means that all the field names we expect are there, there
are no extra field names, and that the types corresponding to the field names match. Here's an
example of some mismatched format for diffs/q2i.diff

EXTRA FIELDS
- foo

MISMATCHED TYPES

- mismatch on field "movield':
- expected type: ‘number’ (example: "63°)
- actual type: "null’, (example: ‘"null’)

FORMAT MISMATCH
- Example of expected document:

]
"movield": 63
§
- Your document:
]
"foo": "bar",
"movielId": null
%

The above output tells you two things:

One of your documents had an extra field. In this case, looking at the "Your document" section,
your output had an extra field called "foo"

One of your documents has a mismatched type for one of its fields. In this case, look at the
"Your document"” section, your output had a value of type null for the field "movield”, when it
should have been a humber.

Diffs

If you pass the format check, we'll run a diff against your query and the expected output. Become

familiar with the UNIX diff format, if you're not already, because our tests saves a simplified diff

for any query executions that don't match in diffs/ . As an example, the following output for
diffs/g2ii.diff: :

+ 3" _id": "only", "count": 521%
$"_did": "just", "count": 481%
- $" _id": "about", "count": 535%

This indicates that:

your output has an extra document {"_id": "about", "count": 535% (the - atthe
beginning means the expected output doesn'tinclude this line but your output has it)

your output is missing the document {"_id": "only", "count": 521% (the plus atthe
beginning means the expected output does include those lines but your output is missing it).

If there is neithera + nor - atthe beginning then it means that the line is in both your
output and the expected output (your output is correct for that line).

If you care to look at the query outputs directly, ours are located in the expected_output
directory. Your output should be located in your solution's your_output directory once you run
the tests.

Reformatting

When we generate the diffs we'll be doing some basic reformatting to reorder things that don't
have an inherent order to make sure that the results are consistent with each other. These include:

field names will be rearranged to be in alphabetical order

arrays when we don't ask for an explicit order to them

Previous
Getting Started

Next
Submitting the Assignment

