
CS 186 Introduction to Database Systems
DIS 13Spring 2024 Lakshya Jain

1 OLTP vs OLAP
For each of these workloads, choose whether it’s better characterized as Online Transaction
Processing (OLTP) or Online Analytical Processing (OLAP).

1. A social media site with millions of users needs to track all the "likes" and "dislikes" that
each post receives.
OLTP: OLTP workloads involve high numbers of transactions executed by many different
users. Queries in these workloads involve simple lookups more often than complex joins. In
this case, when a user likes or dislikes a post, the site would need to do a lookup on that post
and update its likes/dislikes value.

2. An online book store needs to aggregate and analyze its users book purchases by genre over
the last eight months.
OLAP: OLAP workloads involve read-only queries and typically include lots of joins and
aggregations. Often, workloads executed for analysis and decision making are OLAP
workloads. In this case, the book store needs to read from data stored over the last eight
months regarding book purchases, and may need to perform some joins to analyze those
purchases by genre.

3. A multiplayer online game has added updated areas to its map and now wants to assess how
users behave in those areas, and how user playtime has changed as a result.
OLAP: In this case the game designers will need to read data that likely includes which
players logged in after the updated areas were released, their average playtimes, and any
other data that may be relevant to how players behave in the new area.

2 Scaling
1. A small startup realizes that its current database can’t sustain their growing workloads. Given

that these workloads involve a lot of writes but few reads, should it invest in more
partitioning or more replication?
Partitioning: More partitioning means that more queries can execute in parallel. This is
especially good for write-heavy workloads because these can often involve updates to only a
few machines, meaning more of them can happen at once (higher throughput).

CS 186, Spring 2024, DIS 13 1

2. A mechanical failure causes some of the startup’s database machines to permanently crash,
losing data in the process. If the startup wants to prevent similar losses in the future, should it
invest more in partitioning or more replication?
Replication: replication means each database machine is no longer a single point of failure.
Once data is replicated, the entire system is more resilient to data loss because if one machine
crashes, its data can be recovered from the replicas. However, writes will become slower
because the changes have to propagate through all replicas.

3 BASE
1. Database designer Doug is annoyed with his distributed database because for some time af-

ter issuing a write, all his reads return different values. Does this violate any of the BASE
properties?
No. This is in fact the soft state and eventual consistency properties in action. As the write
propagates through the system, reads may return different values because the database is in-
consistent.

For parts (b) - (d), which properties of BASE do these scenarios violate?

2. All reads and writes always have the same views of data, but they sometimes respond to
valid inputs with timeout errors.
Basic Availability. This database seems to prioritize consistency over availability. Since valid
inputs sometimes receive an error response, it violates basic availability.

3. Writes propagate to only 3 replicas, but the system has 5 replicas of each piece of data.
Eventual Consistency. Since writes do not propagate to all 5 replicas, different pieces of data
will always be stale on different replicas, so reads will never be consistent.

4. An empty database that has never been populated responds to a read query on some specific
key with the message "Error: key nonexistent!"
No properties are violated. The basic availability property only guarantees that valid queries
always get a non-error response. However, since the database is empty, a read query is
invalid, so the error response is OK.

4 Key-Value Stores
Database Doug now has the following tables:

Sales (sid, date, quantity, customer, product)

Product (pid, name, price)

CS 186, Spring 2024, DIS 13 2

Customer (cid, name, address)

Sales data is stored with Key = sid, Value = entire Sales record, partitioned on hash function h
and replicated across 3 servers.

1. Describe how the operation get(sid1) would be executed. (Assume a Sale with sid1 exists in
the data).
We must first hash the key, h(sid1), to find which partition the data is stored on. Then we can
retrieve the value from any of the replicas/servers.

2. Describe how the operation put(sid2, saleRecord) would be executed.
We must first hash the key, h(sid2), to find which partition the data should be stored on.
Then, we will insert the record to that partition, and propagate the change to the other
replicas/servers. Note: propagation of changes may not happen immediately. We only need to
enforce eventual consistency.

3. After put(sid2, saleRecord) is executed, is it guaranteed that every app will be able to access
that new Sale data?
No. Since we’re only enforcing eventual consistency, the changes from the put operation may
not have propagated to all replicas yet. Note: It is possible to perform checks to see whether
the replica an app is pulling data from is up-to-date, if the app requires non-stale data.

5 JSON
1. Convert the following relational table into a JSON document.

Players

name debut goals

Tony 10/12/09 43

Katy 1/20/14 22

{

“players”: [

{“name”: “Tony”, “debut”: “10/12/09”, “goals”: 43},

{“name”: “Katy”, “debut”: “1/20/14”, “goals”: 22}

]

}

CS 186, Spring 2024, DIS 13 3

2. Convert the following JSON document into two relational tables, Players(name, debut) and
Goals(name, goals).

{

“players”: [

{“name”: “Abby”, “debut”: “10/12/09”, “goals”: 43},

{“name”: “Babby”, “debut”: “1/20/14”, “goals”: 22},

{“name”: “Cabby”, “debut”: “1/21/14”, “goals”: 23}

]

}

Players Goals

name debut name goals

Abby 10/12/09 Abby 43

Babby 1/20/14 Babby 22

Cabby 1/21/14 Cabby 23

6 Mongo Query Language (MQL)
For the entire question, consider the MongoDB collection teams with the following fields:

● teamId (int)
● divisionId (int)
● stadiumCapacity (int)
● wins (int)
● losses (int)
● coach (string)
● captain (string)

1. Using MQL, write a query to fetch the following: Find the coach and captain of all teams
from division 1 with at least 10 wins, sorted by coach DESC and ties broken by captain
ASC.

CS 186, Spring 2024, DIS 13 4

db.team.aggregate([

{$match: {

wins: {$gte: 10},

divisionId: 1

}},

{$sort: {

"coach": -1,

"captain": 1

}},

{$project: {

"coach": 1,

"captain": 1,

"_id": 0

}}

])

2. Translate the following SQL query into an MQL query:

SELECT divisionId AS div, MAX(wins) AS maxWins
FROM team WHERE stadiumCapacity >= 20000
GROUP BY divisionId
ORDER BY MAX(wins), COUNT(*) DESC;

db.teams.aggregate([

{ $match: {

stadiumCapacity: {$gte: 20000}

}},

{ $group: {

_id: "$divisionId",

maxWins: {$max: "$wins"},

count: {$sum: 1}

}},

{ $sort: {

"maxWins": 1,

"count": -1

}},

{ $project: {

div: "$_id",

_id: 0,

maxWins: 1

}}

])

CS 186, Spring 2024, DIS 13 5

