
Index Files and
B+Tree Refinements

R & G - Chapter 9-10

General characteristics of an index: An Outline

• Issues to consider in any index structure (not just B+-trees)
• Query support: what class of queries does the index allow?
• Choice of Search Key

• Affects the queries for which we can use an index.
• Data Entry Storage

• Affects performance of the index
• Variable-length key tricks

• Affects performance of the index
• Cost Model for Index vs Heap vs Sorted File

QUERY SUPPORT

Indexes: Basic Selection
• Basic Selection: <key> <op> <constant>

• Equality selections (op is =)
• Range selections (op is one of <, >, <=, >=, BETWEEN)
• B+-trees provide both
• Linear Hash indexes provide only equality (but are interesting!)

Indexes: Other Selections
• More Exotic Selections:

• 2-d box (current map boundaries)
• 2-d circle (“within 2 miles of Empire State Building”)
• Common n-dimensional indexes: R-tree, KD-tree, etc.

• Beware of the curse of dimensionality
• Near-neighbor queries (“10 restaurants closest to Empire State Building”)
• Regular expression matches, genome string matches, etc.
• See Postgres’ GiST indexes for a flexible structure developed at Berkeley

The image part with relationship ID rId5 was not found in the file.

Image Url

https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/GiST
https://www.datasciencecentral.com/profiles/blogs/implementing-kd-tree-for-fast-range-search-nearest-neighbor

For Today
• In the remainder of our discussion, we’ll focus on traditional 1-d range search

• And equality as a special case
• As in B+-trees

Search Key and Ordering
• Can index on any ordered subset of columns. Order matters!

• Determines the queries supported
• In an ordered index (e.g. B+-tree) the

keys are ordered lexicographically by
the search key columns:
• Ordered by the 1st column
• 2 items match on 1st column? Ordered by 2nd

• Match on 1st and 2nd column? Ordered by 3rd

• Etc.
• E.g. table to right ordered lexicographically

by the search key <Age, Salary>

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

Search Key and Ordering, Pt 2.
• Defn: A composite search key on columns (k1, k2, …, kn) “matches” a query if:

• The query is a conjunction of m >= 0 equality clauses of the form:
k1 = <val1> AND k2 = <val2> AND .. AND km = <valm>

and at most 1 additional range clause of the form:
AND km+1 op <val>, where op is one of {<, >}

• Why does this “match”? Lookup and scan in lexicographic order
• Can do a lookup on equality conjuncts to find start-of-range
• Can do a scan of contiguous data entries at leaves

• satisfy the m+1st conjunct
• or if there is no m+1st conjunct

• scan the entire set of matches to the first m conjuncts

Search Key and Ordering, Pt 3
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>

• Legend Green for rows we visit that are in the range

Red for rows we visit that are not in the range

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 4
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 5
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 6
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200

✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 6, cont
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200✓

✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt. 7
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400

✓
✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 8
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400✗

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗

✓
✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 9
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗

✗

✓
✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 10
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31✓

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗

✗

✓
✓

Search Key and Ordering, Pt 11
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31
• Age > 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗
✓
✗

✓
✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 12
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31
• Age > 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗
✓
✗

✓
✓

✓

Search Key and Ordering, Pt 13
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31
• Age > 31
• Salary = 300

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗
✓
✗

✓
✓

✓

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 14
• Composite Keys: more than one column

• Lexicographic order
• Search a range?
• <Age, Salary>:

• Age = 31 & Salary = 400
• Age = 55 & Salary > 200
• Age > 31 & Salary = 400
• Age = 31
• Age > 31
• Salary = 300

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

✗
✓
✗

✓
✓

✓
✗

SSN Last
Name

First
Name

Age Salary

123 Adams Elmo 31 $300

443 Grouch Oscar 32 $400

244 Oz Bert 55 $140

134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Data Entry Storage Intro
• What is the representation of data in the index?

• Actual data or pointer to the data

• How is the data stored in the data file?
• Clustered or unclustered with respect to the index

• Big Impact on Performance
• We’ll learn each of these next

Three basic alternatives for data entries in any index

• Three basic alternatives for data entries in any index
• Alternative 1: By Value
• Alternative 2: By Reference
• Alternative 3: By List of references

• We’ll look in the context of B+-trees, but applies to any index

Alternative 1 Index (B+ Tree)

• Record contents are stored in the index file
• No need to follow pointers

17

5 24

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim)

Root Node

(24, Kit)

Data Entries

Interior Nodes

uid name

2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

Alternative 2 Index
• Alternative 2: By Reference, <k, rid of matching data record>

• We used in slides above

uid name
2 Joe

3 Jim

5 Kay

7 Dan

20 Tim

24 Kit

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit)

17

5 24

(2, [1,1]) (3, [1,2]) (5, [2,1]) (7, [2,2]) (20, [3,1])

Root Node

(24, [3,2])

Data Entries

Interior Nodes

Index File

Index Contains
(Key, Record Id)

Pairs

Alternative 3 Index
• Alternative 3: By List of references, <k, list of rids of matching data records>

• Alternative 3 more compact than alternative 2
• For very large rid lists, single data entry spans multiple blocks

(2, Joe) (2, Jim) (2, Kay) (3, Dan) (3, Tim) (20, Kit)

17

5 24

(2, {[1,1], [1,2], [2, 1]} (3, {[2,2], [3, 1]}) (20, {3, 2}])

Root Node

…

Data Entries

Interior Nodes

Index File

Index Contains
(Key, {list of record Id}) Pairs

Key Record
Id

2 {[1,1],
[1,2],
[1,3]}

3 4

…

Indexing By Reference
• Both Alternative 2 and Alternative 3 index data by reference
• By-reference is required to support multiple indexes per table

• Otherwise we would be replicating entire tuples
• Replicating data leads to complexity when we’re doing updates, so it’s something we want to avoid

Alternative 2
Index data entries

Alternative 3
Index data entries

(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit)

17

5 24

(2, [1,1]) (3, [1,2]) (5, [2,1]) (7, [2,2]) (20, [3,1])

Root Node

(24, [3,2])

Data Entries

Interior Nodes

Index File

(2, Joe) (2, Jim) (2, Kay) (3, Dan) (3, Tim) (20, Kit)

17

5 24

(2, {[1,1], [1,2], [2, 1]} (3, {[2,2], [3, 1]}) (20, {3, 2}])

Root Node

…

Data Entries

Interior Nodes

Index File

…

Alternative 2 vs Alternative 3 Table Illustration

SSN Last
Name

First
Name

Salary

123 Gonzalez Amanda $400

443 Gonzalez Joey $300

244 Gonzalez Jose $140

134 Hong Sue $400

Key Record
Id

Gonzalez [3, 1]

Gonzalez [3, 2]

Gonzalez [3, 3]

Hong [3, 4]

Key Record Id

Gonzalez [3, {1, 2, 3}]

Hong [3,4]

Alternative 2
Index data entries Alternative 3

Index data entries

Clustered vs. Unclustered Index
• By-reference indexes (Alt 2 and 3) can be clustered or unclustered

• Really this is a property of the heap file associated with the index!
• Clustered index:

• Heap file records are kept mostly ordered according to search keys in index
• Heap file order need not be perfect: this is just a performance hint
• Cost of retrieving data records through index varies greatly based on whether index

is clustered or not!

• Note: different definition of “clustering” in AI:
• grouping nearby items in n-space

Clustered vs. Unclustered Index Visualization 1

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• Index entries direct search for data entries

Index

Clustered

Index

Unclustered

Clustered vs. Unclustered Index Visualization 2

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• Index entries direct search for data entries

Index

Clustered

Index

Unclustered

Clustered vs. Unclustered Index Visualization 3

Index

Clustered

Index

Unclustered

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts
• Index entries direct search for data entries

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts

• Blocks at end of file may be needed for inserts
• Order of data records is “close to”, but not identical to, the sort order

Clustered vs. Unclustered Index Visualization 5

Index

Clustered

Clustered vs. Unclustered Index Visualization 6

Index

Clustered

• To build a clustered index, first sort the heap file
• Leave some free space on each block for future inserts

• Blocks at end of file may be needed for inserts
• Order of data records is “close to”, but not identical to, the sort order

Clustered vs. Unclustered Indexes Pros
• Clustered Index Pros

• Efficient for range searches
• Potential locality benefits

• Sequential disk access, prefetching, etc.
• Support certain types of compression

• More soon on this topic

Clustered vs. Unclustered Indexes Cons
• Clustered Cons

• More expensive to maintain
• Need to periodically update heap file order
• Solution: on the fly or “lazily” via reorganizations

• Heap file usually only packed to 2/3 to accommodate inserts

B+TREE REFINEMENT:
VARIABLE-LENGTH KEYS

Variable Length Keys & Records
• So far we have been using integer keys

• What would happen to our occupancy invariant with variable length
keys?

• What about data in leaf pages:

2513

Dan Ha Danielle Yogurt Davey Jones David Yu Diana Murthy

Dan Ha : {3, 14, 30, 50, 75, 90} Dan Ham: {1}} Danielle
Yogurt: {12, 13} Dannon Smith: {1}

Redefine Occupancy Invariant
• Order (d) makes little sense with variable-length entries

• Different nodes have different numbers of entries.
• Index pages often hold many more entries than leaf pages
• Even with fixed length fields, Alternative 3 gives variable length data entries

• Use a physical criterion in practice: at-least half-full
• Measured in bytes

• Many real systems are even sloppier than this
• Only reclaim space when a page is completely empty.
• Basically the deletion policy we described above…

Prefix Compress Keys?
• How can we get more keys on a page?

• What if we compress the keys?

• Are these the same
• David Jones?
• Not the same partitioning of possible keys
• But why would we care??

Dan Dani Dav Davi Di

Dan Ha Danielle Yogurt Davey Jones David Yu Diana Murthy

Prefix Key Compression
• What if we compress starting at leaf:

• On split, determine minimum splitting prefix and copy up
Sarah Z

Sarah Lee Sarah Manning

Sarah Zhu Sarita Adve Saruman The White

Sarah Manning Sarah Zhu Sarita Adve Saruman The WhiteSarah Lee

Suffix Key Compression
• All keys have large common prefix

• Move common prefix to header, leave only (compressed) suffix next to pointer

• When might this be especially useful?
• Composite Keys. Example?

• <Zip code, Last Name, First Name>

“Sar”
ah L ah M ah Z i u

SarumanSarah L Sarah M Sarah Z Sarita

Suffix
compression

Prefix
compression as
on previous slide

B+-TREE COSTS

Recall: Cost of Operations

• Can we do better with indexes?

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Cost of Operations

• Can we do better with indexes?

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Cost of Operations, cont
Heap File Sorted File Clustered Index

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Clustered vs. Unclustered Index Assumptions

• Store data by reference (Alternative 2)
• Clustered index with 2/3 full heap file pages

• Clustered à Heap file is initially sorted
• Fan-out (F): relatively large. Why?

• Page of <key, pointer> pairs ~ O(R)
• Assume static index

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

The image part with relationship ID rId2 was not found in the file.Scan all the Records

Recall assumption from before regarding
clustered indexes: heap file pages only
2/3 full.

• Do we need an Index?
• No

• Cost? = 1.5 * B * D
• Why?

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Cost of Operations: Scan
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block

Cost of Operations: Equality Search?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Find the record with key 3, pt 1
• Search the index:= (logF (BR/E) + 1) * D

• BR is the total number of records; E is the #records per leaf
• the +1 is an “off by 1” thing: catches the cost of the root
• E.g. F = 4, BR/E = 16: root, intermediate, leaf levels.
• Log4(16) = 2, and I/O cost is 3!

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Find the record with key 3, pt 2
• Search the index:= (logF (BR/E) + 1) * D

• Lookup record in heap file by record-id = 1 * D
• Recall record-id = <page, slot #>

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Cost of Operations: Equality Search
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Cost of Operations: Range Search?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Find keys between 3 and 7
• Search the index: = (logF (BR/E) + 1) * D
• Scan the leaf level and lookup each matching record in the heap file by record-id

• Recall record-id = <page, slot #>
• Heap file access: (3/2 * #pages) * D
• Scanning the leaf level is similar to heap file access: assume same (3/2 * #pages) * D
• In total (logF (BR/E) + 3 * # pages) * D since one leaf page is overcounted in searching index and

scanning leaf level

Index

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _3, 4, _ 5, 6, _ 7, 8, _

Cost of Operations: Range Search
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Cost of Operations: Insert?
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Cost of Operations: Insert
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D (logF(BR/E)+4)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Cost of Operations: Delete
Heap File Sorted File Clustered Index

Scan all records B*D B*D 3/2 * B * D

Equality Search 0.5*B*D (log2B)*D (logF(BR/E)+2)*D

Range Search B*D ((log2B)+pages))*D (logF(BR/E)+3*pages)*D

Insert 2*D ((log2B) + B)*D (logF(BR/E)+4)*D

Delete (0.5*B+1)*D ((log2B) + B)*D (logF(BR/E)+4)*D

Why “+4” in
Insert/Delete?

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Cost of Operations: Big O Notation
Heap File Sorted File Clustered Index

Scan all records O(B) O(B) O(B)

Equality Search O(B) O(log2B) O(logFB)

Range Search O(B) O(log2B) O(logFB)

Insert O(1) O(B) O(logFB)

Delete O(B) O(B) O(logFB)

• B: The number of data blocks
• R: Number of records per block
• D: Average time to read/write disk block
• F: Average internal node fanout
• E: Average # data entries per leaf

Constant factors
• Assume you can do 100 sequential I/Os in the time of 1 random I/O

• For a particular lookup, is a B+-tree better than a full-table scan?
• Had better be very “selective”

• Visit < ~1% of pages!
• Or do mostly sequential I/O at leaf level

• Clustered index
• Or use SSD

• SSDs make indexes attractive
• Especially for read-mostly workloads

Summary
• Query Structure

• Understand composite search keys
• Lexicographic order and search key prefixes

• Data Storage
• Data Entries: Alt 1 (tuples), Alt 2 (recordIds), Alt 3 (lists of recordIds)
• Clustered vs. Unclustered

• Only Alt 2 & 3!

Summary Cont
• Variable length key refinements

• Fill factors for variable-length keys
• Prefix and suffix key compression

• B+-tree Cost Model
• Attractive big-O
• Don’t forget constant factors of random I/O

• Hard to beat sequential I/O of scans unless very selective
• Indexes beyond B+-trees for more complex searches

