Index Files and
B+Tree Refinements

R & G - Chapter 9-10

Berkeley

cs186

General characteristics of an index: An Outline

* |ssues to consider in any index structure (not just B+-trees)
* Query support: what class of queries does the index allow?
* Choice of Search Key
Affects the queries for which we can use an index.
- Data Entry Storage
Affects performance of the index
» Variable-length key tricks
Affects performance of the index
* Cost Model for Index vs Heap vs Sorted File

QUERY SUPPORT

Indexes: Basic Selection

- Basic Selection: <key> <op> <constant>
- Equality selections (op is =)
« Range selections (op is one of <, >, <=, >=, BETWEEN)
* B+-trees provide both
 Linear Hash indexes provide only equality (but are interesting!)

Indexes: Other Selections

* More Exotic Selections:
« 2-d box (current map boundaries)
« 2-d circle (“within 2 miles of Empire State Building”)
« Common n-dimensional indexes: R-tree, KD-tree, etc.
« Beware of the curse of dimensionality
* Near-neighbor queries (“10 restaurants closest to Empire State Building”)
* Regular expression matches, genome string matches, etc.
« See Postgres’ GiST indexes for a flexible structure developed at Berkeley

Image Url

https://en.wikipedia.org/wiki/R-tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/GiST
https://www.datasciencecentral.com/profiles/blogs/implementing-kd-tree-for-fast-range-search-nearest-neighbor

For Today

* In the remainder of our discussion, we’ll focus on traditional 1-d range search
* And equality as a special case
* Asin B+-trees

Search Key and Ordering

« Can index on any ordered subset of columns. Order matters!
« Determines the queries supported Last salary
* In an ordered index (e.g. B+-tree) the ﬂ%-g
keys are ordered lexicographically by

443 Grouch Oscar 32 S400
the search key columns: T
* Ordered by the 18t column 134 Sanders Ernie 55 $400
« 2 items match on 1st column? Ordered by 2"d
« Match on 1st and 2"d column? Ordered by 3

 Etc.

- E.g. table to right ordered lexicographically
by the search key <Age, Salary>

Search Key and Ordering, Pt 2.

« Defn: A composite search key on columns (kq, ks, ..., k) “matches” a query if:

« The query is a conjunction of m >= 0 equality clauses of the form:
k; = <val;> AND k, = <val,> AND .. AND k, = <val >
and at most 1 additional range clause of the form:
AND k., op <val>, where op is one of {<, >}

« Why does this “match”? Lookup and scan in lexicographic order

Can do a lookup on equality conjuncts to find start-of-range
Can do a scan of contiguous data entries at leaves
satisfy the m+1st conjunct
or if there is no m+1st conjunct
scan the entire set of matches to the first m conjuncts

Search Key and Ordering, Pt 3

« Composite Keys: more than one column

- Lexicographic order ﬂmm-

« Search arange? Adams Elmo $300
443 Grouch Oscar 32 S400
« <Age, Salary>
244 Oz Bert 55 $140
134 Sanders Ernie 55 $400
[]
Legend Green for rows we visit that are in the range 176 S & i

Red for rows we visit that are not in the range

Search Key and Ordering, Pt 4

« Composite Keys: more than one column

+ Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Salary>: 443 Grouch Oscar 32 S400
244 Oz Bert 55 $140

° Age — 31 & Salary = 400 134 Sanders Ernie 55 S400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 5

« Composite Keys: more than one column

+ Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Salary>: 443 Grouch Oscar 32 S400

244 0z Bert 55 $140
VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400

176 Grump Donald 79 $300

Search Key and Ordering, Pt 6

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Sa|al’y>: 443 Grouch Oscar 32 S400
244 0z Bert 55 $140
VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400
176 Grump Donald 79 $300

« Age = 55 & Salary > 200

Search Key and Ordering, Pt 6, cont

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Sa|al’y>: 443 Grouch Oscar 32 S400

244 0z Bert 55 $140
VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400

J/ * Age =55 & Salary > 200 176 Grump Donald 79 $300

Search Key and Ordering, Pt. 7

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Sa|al’y>: 443 Grouch Oscar 32 S400
244 0z Bert 55 $140
VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400
176 G Donald 79 $300
v+ Age =55 & Salary > 200 ____

* Age > 31 & Salary = 400

Search Key and Ordering, Pt 8

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
. <Age, Sa|al’y>: 443 Grouch Oscar 32 S400
244 0z Bert 55 $140
VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400
176 G Donald 79 $300
v+ Age =55 & Salary > 200 ____

X * Age > 31 & Salary = 400

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

Search Key and Ordering, Pt 9

« Composite Keys: more than one column

' Lexicographic order RN

« Search arange? Adams Elmo $300
: <Age, Salary> .
Vo Age = 31 & Salary = 400 134 Sanders Erie 55 $400
J/ * Age =55 & Salary > 200 -
X * Age > 31 & Salary = 400

* Age = 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

Search Key and Ordering, Pt 10

« Composite Keys: more than one column

' Lexicographic order RN

« Search arange? Adams Elmo $300
: <Age, Salary> .
Vo Age = 31 & Salary = 400 134 Sanders Erie 55 $400
J/ * Age =55 & Salary > 200 -
X * Age > 31 & Salary = 400

v ° Age =31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

Search Key and Ordering, Pt 11

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
- <Age, Salary> L1
Vo Age = 31 & Salary = 400 134 Sanders Emie 55 $400
J/ * Age =55 & Salary > 200 5 fme el RO W
X * Age > 31 & Salary = 400
v ° Age =31
* Age > 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

Search Key and Ordering, Pt 12

« Composite Keys: more than one column

' Lexicographic order BN

« Search arange? Adams Elmo $300
- <Age, Salary> L1
Vo Age = 31 & Salary = 400 134 Sanders Emie 55 $400
J/ * Age =55 & Salary > 200 5 fme el RO W
X * Age > 31 & Salary = 400

v ° Age =31

v ° Age> 31

Not a lexicographic range. Either
visits useless rows or has to
“bounce through” the index.

Search Key and Ordering, Pt 13

« Composite Keys: more than one column

' Lexicographic order RN

« Search arange? Adams Elmo $300
: <Age, Salary> .
Vo Age = 31 & Salary = 400 134 Sanders Ermie 55 $400
J/ * Age =55 & Salary > 200 EEEE——
X * Age > 31 & Salary = 400

v ° Age =31

v ° Age> 31

Not a lexicographic range. Either

Sa|ary = 300 X visits useless rows or has to

“bounce through” the index.

Search Key and Ordering, Pt 14

« Composite Keys: more than one column

' Lexicographic order RN

« Search arange? Adams Elmo $300
. 443 Grouch Oscar 32 $400

° <Age’ Salary>. 244 0z Bert 55 $140

VAR Age = 31 & Salary = 400 134 Sanders Ernie 55 $400

\/ . Age _ 55 & Salary S 200 176 Grump Donald 79 $300

X * Age > 31 & Salary = 400

v ° Age =31

\/) Age > 31 Not a lexicographic range. Either

X « Salary = 300 X visits useless rows or has to

“bounce through” the index.

Data Entry Storage Intro

« What is the representation of data in the index?
» Actual data or pointer to the data

* How is the data stored in the data file?
 Clustered or unclustered with respect to the index

- Big Impact on Performance
 We’'ll learn each of these next

Three basic alternatives for data entries in any index

* Three basic alternatives for data entries in any index
« Alternative 1: By Value
« Alternative 2: By Reference

« Alternative 3: By List of references
« We'll look in the context of B+-trees, but applies to any index

Alternative 1 Index (B+ Tree)

Record contents are stored in the index file
* No need to follow pointers

Root Node

Interior Nodes

Data Entries

@, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit)

Y~ I

~ (63} w N

24

Joe
Jim
Kay
Dan
Tim

Kit

Alternative 2 Index

- Alternative 2: By Reference, <k, rid of matching data record>
 We used in slides above

Index File Root Node
) Index Contains
Interior Nodes (Key, Record Id)
Pairs
Data Entries
e @12 GRDERD @B 62, 32

v

*
v . “..-_/'. _/ .
v v .
.'.
*

Y o\ = v X
(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit) J

| uid | name
2 Joe
3 Jim
5 Kay
7 Dan
20 Tim
24 Kit

Alternative 3 Index

- Alternative 3: By List of references, <K, list of rids of matching data records>

* Alternative 3 more compact than alternative 2
» For very large rid lists, single data entry spans multiple blocks

Index File Root Node Key

Index Contains 2 {111,
Interior Nodes (Key, {list of record Id}) Pairs [1,2],
[1,3]}

3 4

Data Entries

P "
2, {(1,4], [1,2], [2,11} (3, {[2,2], [3, 1]}) (20, {3, 2}1
— ‘og.! ‘-
%V"::::... '.... \ ./
5;;.... ey, e, .

]

L]

.......
v, a

e
]
.....
]
e

(2, Joe) (2, Jim)

..A - .A
@3, Tim) (20, Kit)

Indexing By Reference

« Both Alternative 2 and Alternative 3 index data by reference

« By-reference is required to support multiple indexes per table
« Otherwise we would be replicating entire tuples
* Replicating data leads to complexity when we’re doing updates, so it’s something we want to avoid

Alternative 2 Alternative 3
Index data entries Index data entries
Index File Root Node Index File Root Node

Interior Nodes Interior Nodes

Data Entries Data Entries

(.01 @ [1.2) (6, [21) (7, [2,2) (20, 3,1) (24,13,2) @ {111,112, 12,11 (@3, {[2,2], [3, 11) (20, {3,2)]
...... . e, B— " D — VR
................. ‘:‘.x'.','-., -..;.-:.....,._.. ,

R Y = LYy ~x - £ Yy « '. = Oy £ = =
(2, Joe) (3, Jim) (5, Kay) (7, Dan) (20, Tim) (24, Kit) J (2, Joe) | (2, Jim) (2, Kay) (3, Dan) l (3, Tim) (20, Kit) l

Alternative 2 vs Alternative 3 Table lllustration

Alternative 2
Index data entries Alternative 3

\d Record Id

Gonzalez [3,1] =——> Gonzalez ~ Amanda $400 Gonzalez [3, {1,2,3}]
—
Gonzalez [3, 2] 443 Gonzalez Joey $300 Hong 3.4]
Gonzalez [3, 3] — 244 Gonzalez Jose $140 /
Hong [3,4] ————p 134 Hong Sue S400

Clustered vs. Unclustered Index

- By-reference indexes (Alt 2 and 3) can be clustered or unclustered
* Really this is a property of the heap file associated with the index!

* (Clustered index:

* Heap file records are kept mostly ordered according to search keys in index
Heap file order need not be perfect: this is just a performance hint

Cost of retrieving data records through index varies greatly based on whether index
is clustered or not!

* Note: different definition of “clustering” in Al:
* grouping nearby items in n-space

Clustered vs. Unclustered Index Visualization 1

« To build a clustered index, first sort the heap file
* Leave some free space on each block for future inserts
* Index entries direct search for data entries

Clustered E e Unclustered

Clustered vs. Unclustered Index Visualization 2

« To build a clustered index, first sort the heap file
* Leave some free space on each block for future inserts
* Index entries direct search for data entries

Clustered E E Unclustered

Clustered vs. Unclustered Index Visualization 3

« To build a clustered index, first sort the heap file
* Leave some free space on each block for future inserts
* Index entries direct search for data entries

Clustered E E Unclustered

S5
i — - T K

Clustered vs. Unclustered Index Visualization 5

« To build a clustered index, first sort the heap file
* Leave some free space on each block for future inserts

* Blocks at end of file may be needed for inserts
* Order of data records is “close t0”, but not identical to, the sort order

e
............... // INI\&\

Clustered vs. Unclustered Index Visualization 6

« To build a clustered index, first sort the heap file
* Leave some free space on each block for future inserts

* Blocks at end of file may be needed for inserts
* Order of data records is “close t0”, but not identical to, the sort order

Clustered

Clustered vs. Unclustered Indexes Pros

* Clustered Index Pros
- Efficient for range searches
» Potential locality benefits
« Sequential disk access, prefetching, etc.
* Support certain types of compression
« More soon on this topic

Clustered vs. Unclustered Indexes Cons

* Clustered Cons
* More expensive to maintain
* Need to periodically update heap file order
« Solution: on the fly or “lazily” via reorganizations
« Heap file usually only packed to 2/3 to accommodate inserts

B+TREE REFINEMENT:
VARIABLE-LENGTH KEYS

Variable Length Keys & Records

« So far we have been using integer keys

- 13 = 25 -

What would happen to our occupancy invariant with variable length
keys?

* DanHa < Danielle Yogurt < DaveydJones < DavidYu ¢ Diana Murthy

« What about data in leaf pages:

DETIEE]
Yogurt: {12, 13}

Dan Ha: {3, 14, 30, 50, 75, 90} e Dan Ham: {1}} e

o Dannon Smith: {1}

Redefine Occupancy Invariant

* Order (d) makes little sense with variable-length entries
» Different nodes have different numbers of entries.
* Index pages often hold many more entries than leaf pages
« Even with fixed length fields, Alternative 3 gives variable length data entries

* Use a physical criterion in practice: at-least half-full
* Measured in bytes

* Many real systems are even sloppier than this
* Only reclaim space when a page is completely empty.

« Basically the deletion policy we described above...

Prefix Compress Keys?

- How can we get more keys on a page?

Danielle Yogurt » Davey Jones (o David Yu e Diana Murthy

« What if we compress the keys?

e Dani ¢« Dav e Davi & Di

* Are these the same
* David Jones?
* Not the same partitioning of possible keys
* But why would we care??

Prefix Key Compression

« What if we compress starting at leaf:

Sarah Manning Sarah Zhu Sarita Adve Saruman The White

* On split, determine minimum splitting prefix and copy up

o Sarahlee | Sarah Manning

Sarah Zhu e, Sarita Adve e Saruman The White (e

Suffix Key Compression

- All keys have large common prefix

e SarahL <+« SarahM ¢ SarahZ Sarita e Saruman °

« Move common prefix to header, leave only (compressed) suffix next to pointer

Suffix
compression

Prefix
compression as

« When might this be especially useful? on previous slide

« Composite Keys. Example?
« <Zip code, Last Name, First Name>

B+-TREE COSTS

Recall: Cost of Operations

_ Heap File Sorted File

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

Can we do better with indexes?

B: The number of data blocks
R: Number of records per block
D: Average time to read/write disk block

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

Can we do better with indexes?

B: The number of data blocks
R: Number of records per block
D: Average time to read/write disk block

Cost of Operations, cont

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

« B: The number of data blocks
* R: Number of records per block
- D: Average time to read/write disk block

Clustered vs. Unclustered Index Assumptions

« Store data by reference (Alternative 2)
« Clustered index with 2/3 full heap file pages
* Clustered - Heap file is initially sorted
« Fan-out (F): relatively large. Why?
« Page of <key, pointer> pairs ~ O(R)
« Assume static index

Scan all the Records

* Do we need an Index?
« No Recall assumption from before regarding

e Cost?=15*B*D
« Why?

clustered indexes: heap file pages only
2/3 full.

Cost of Operations: Scan

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

« B: The number of data blocks
* R: Number of records per block
- D: Average time to read/write disk block

Cost of Operations: Equality Search?
IR T T

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

F: Average internal node fanout
E: Average # data entries per leaf

Find the record with key 3, pt 1

» Search the index:= (log: (BR/E) + 1) * D

* BRis the total number of records; E is the #records per leaf
« the +1 is an “off by 1” thing: catches the cost of the root
 E.g. F =4, BR/E = 16: root, intermediate, leaf levels.

* Log,(16) =2, and I/O cost is 3!

Find the record with key 3, pt 2

« Search the index:= (log: (BR/E) + 1) * D

* Lookup record in heap file by record-id =1 *D
Recall record-id = <page, slot #>

Cost of Operations: Equality Search
IR T T

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Cost of Operations: Range Search?

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Find keys between 3 and 7

« Search the index: = (loge (BR/E) + 1) * D

« Scan the leaf level and lookup each matching record in the heap file by record-id
Recall record-id = <page, slot #>

« Heap file access: (3/2 * #pages) * D
* Scanning the leaf level is similar to heap file access: assume same (3/2 * #pages) * D

* Intotal (logr (BR/E) + 3 * # pages) * D since one leaf page is overcounted in searching index and
scanning leaf level

Cost of Operations: Range Search

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D (log(BR/E)+3*pages)*D
Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Cost of Operations: Insert?

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D (log(BR/E)+3*pages)*D
Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Cost of Operations: Insert

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D (log(BR/E)+3*pages)*D
Insert 2*D ((log,B) + B)*D (loge(BR/E)+4)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Cost of Operations: Delete Why “+4” in

Insert/Delete?

_ Heap File Sorted File Clustered Index

Scan all records 3/2*B*D
Equality Search 0.5*B*D (log,B)*D (loge(BR/E)+2)*D
Range Search B*D ((log,B)+pages))*D (log(BR/E)+3*pages)*D
Insert 2*D ((log,B) + B)*D (loge(BR/E)+4)*D
Delete (0.5*B+1)*D ((log,B) + B)*D (loge(BR/E)+4)*D

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Cost of Operations: Big O Notation
L

Scan all records O(B) O(B)

Equality Search O(B) O(log,B) O(logB)
Range Search O(B) O(log,B) O(log.B)
Insert 0(1) O(B) O(logB)
Delete O(B) O(B) O(loggB)

* B: The number of data blocks

* R: Number of records per block

« D: Average time to read/write disk block
* F: Average internal node fanout

« E: Average # data entries per leaf

Constant factors

« Assume you can do 100 sequential I/Os in the time of 1 random |/O

* For a particular lookup, is a B+-tree better than a full-table scan?
« Had better be very “selective”
* Visit < ~1% of pages!
* Or do mostly sequential I/0O at leaf level
* Clustered index

 Oruse SSD

« SSDs make indexes attractive
Especially for read-mostly workloads

Summary

e Query Structure
» Understand composite search keys
« Lexicographic order and search key prefixes
- Data Storage
- Data Entries: Alt 1 (tuples), Alt 2 (recordlds), Alt 3 (lists of recordlds)

e (Clustered vs. Unclustered
 Only Alt 2 & 3!

Summary Cont

« Variable length key refinements
« Fill factors for variable-length keys
« Prefix and suffix key compression

 B+-tree Cost Model
 Attractive big-O

« Don’t forget constant factors of random 1/O
* Hard to beat sequential I/O of scans unless very selective
* Indexes beyond B+-trees for more complex searches

