= 'm@=m CS186 Projects Q

Part 0: Skeleton Code

To read, or not to read, that is the question

In this project you'll be implementing some common join algorithms and a limited version of the
Selinger optimizer. We've provided a brief introduction into the new parts of the code base you!'ll
be working with.

For Part 1 we recommend you read through:

common/iterator - Details on backtracking iterators, which will be needed to implement joins

Join Operators - Details on the base class of the join operators you'll be implementing and
some useful helper methods we've provided

query/disk - Details on some useful classes for implementing Grace Hash Join and External
Sort

For Part 2 we recommend you read through:

Scan and Special Operators - These talk about additional operators that you'll use while
creating query plans

query/QueryPlan.java - Gives a high level overview of a QueryPlan and some details on how to
create and work with them

common/iterator



The common/iterator directory contains an interface called a BacktrackingIterator .
Iterators that implement this will be able to mark a point during iteration, and reset back to that
mark. For example, here we have a backtracking iterator that just returns 1, 2, and 3, but can
backtrack:

BackTrackingIterator<Integer> iter = new BackTrackingIteratorImplementation();
iter.next(); // returns 1

iter.next(); // returns 2

iter.markPrev(); // marks the previously returned value, 2
iter.next(); // returns 3

iter.hasNext(); // returns false

iter.reset(); // reset to the marked value (line 3)
iter.hasNext(); // returns true

iter.next(); // returns 2

iter.markNext(); // mark the value to be returned next, 3
iter.next(); // returns 3

iter.hasNext(); // returns false

iter.reset(); // reset to the marked value (line 11)
iter.hasNext(); // returns true

iter.next(); // returns 3

ArrayBacktrackingIterator implements this interface. It takes in an array and returns a
backtracking iterator over the values in that array.

query/QueryOperator.java

The query directory contains what are called query operators. A single query to the database
may be expressed as a composition of these operators. All operators extend the QueryOperator
class and implement the Tterable<Record> interface. The scan operators fetch data from a
single table. The remaining operators take one or more input operators, transform or combine the
input (e.g. projecting away columns, sorting, joining), and return a collection of records.

Join Operators

JoinOperator.java isthe base class of all the join operators. Reading this file and
understanding the methods given to you can save you a lot of time on Part 1. It provides
methods you may need to deal with tables and the current transaction. You should not be dealing
directly with Table objects nor TransactionContext objects while implementing join



algorithms in Part 1 (aside from passing them into methods that require them). Subclasses of
JoinOperator are all located in query/join .

Some helper methods you might want to be aware of are located here.

Scan Operators

The scan operators fetch data directly from a table.

SequentialScanOperator.java - Takes atable name provides an iterator over all the records
of that table

IndexScanOperator.java - Takes a table name, column name, a PredicateOperator (>, <, <=,
>=, =) and a value. The column specified must have an index built on it for this operator to
work. If so, the index scan will use take advantage of the index to yield records with columns
satisfying the given predicate and value (e.g. salaries.yearid >= 2000 ) efficiently

Special Operators

The remaining operators don't fall into a specific category, but rather perform some specific
purpose.

SelectOperator.java - Corresponds to the o operator of relational algebra. This operator
takes a column name, a PredicateOperator (>, <, <=, >=, =, I=) and a value. It will only yields
records from the source operator for which the predicate is satisfied, for example (

yearid >= 2000 ) ProjectOperator.java - Corresponds to the m operator of relational
algebra. This operator takes a list of column names and filters out any columns that weren't
listed. Can also compute aggregates, but that is out of scope for this project

SortOperator.java - Yields records from the source operator in sorted order. You'll be
implementing this in Part 1

Other Operators

These operators are out of scope and directly relevant to the code you'll be writing in this project.

MaterializeOperator.java - Materializes the source operator into a temporary table
immediately, and then acts as a sequential scan over the temporary table. Mainly used in
testing to control when 10s take place



GroupByOperator.java - Out of scope for this project. This operator accepts a column name
and yields the records of the source operator but with the records grouped by their value and
each separated by a marker record. For example, if the source operator had singleton records

[0,1,2,1,2,0,1] the group by operator mightyield [0,0,M,1,1,1,M,2,2] where M isa
marker record.

query/disk

The classes in this directory are useful for implementing Grace Hash Join and External Sort, and
correpond to the concept of "partitions" and "runs" used in those topics respectively. Both classes
have an add method that can be used to insert a record into the partition/run. These classes will
automatically buffer insertions and reads so that at most one page is needed in memory at a
time.

query/aggr

The classes and functions in this directory implement aggregate functions, and are not necessary
to complete the project (though you're free to browse through them if you're interested).

query/QueryPlan.java



SELECT tablel.q, table2.b FROM table1 JOIN table2 ON tablel.c = table2.c WHERE tablel.d > 10

/y\

next()

next() /[

next() /T\

\
nexf()/ \exf()

This is the volcano model, where the operators are layered atop one another, and each operator
requests tuples from the input operator(s) as it needs to generate its next output tuple. Note that
each operator only fetches tuples from its input operator(s) as needed, rather than all at once!

A query plan is a composition of query operators, and it describes how a query is executed. Recall
that SQL is a declarative language - the user does not specify how a query is run, and only what
the query should return. Therefore, there are often many possible query plans for a given query.

The QueryPlan class represents a query. Users of the database create queries using the public
methods (such as join() , select() ,etc.)andthen call execute to generate a query plan for
the query and get back an iterator over the resulting data set (which is not fully materialized: the
iterator generates each tuple as requested). The current implementation of execute simply calls

executeNaive , which joins tables in the order given; your task in Part 2 will be to generate better
query plans.

SelectPredicate

SelectPredicate is a helper class inside of QueryPlan.java that stores information about that
selection predicates that the user has applied, for example someTable.coll < 186 . A select



predicate has four values that you can access:

tableName and columnName specify which column the predicate applies to
operator represents the type of operator being used (for example <, <=, > ,etc...)

value is a DataBox containing a constant value that the column should be evaluated against
(in the above example, 186 would be the value).

All of the select predicates for the query are stored inside the selectPredicates instance variable.
JoinPredicate

JoinPredicate is a helper class inside of QueryPlan.java that stores information about the
conditions on which tables are joined together, for example:

leftTable.leftColumn = rightTable.rightColumn . All joins in RookieDB are equijoins.
JoinPredicates have five values:

joinTable : the name of one of the table's being joined in. Only used for toString()
leftTable : the name of the table on the left side of the equality

leftColumn :the name of the column on the left side of the equality

rightTable :the name of the table on the right side of the equality

rightColumn : The name of the column on the right side of the equality

All of the join predicates for the query are stored inside of the joinPredicates instance variable.

Interface for querying

You should read through the Database.java section of the main overview and browse through
examples in src/test/java/edu/berkeley/cs186/database/TestDatabase.java to
familiarize yourself with how queries are written in our database.

After execute() hasbeen called ona QueryPlan object, you can print the final query plan:

Iterator<Record> result = query.execute();
QueryOperator finalOperator = query.getFinalOperatoxr();
System.out.println(finalOperator.toString());



-> SNLJ on S.sid=E.sid (cost=6)
-> Seq Scan on S (cost=3)
-> Seq Scan on E (cost=3)

Previous
Getting Started

Next
Part 1: Join Algorithms



