
CS 186 Introduction to Database Systems
DIS 5Spring 2024 Lakshya Jain

1 General External Merge Sort
Given – N pages to sort, B buffer pages in memory
Pass 1 – Use B buffer pages. Produce sorted runs of B pages each.𝑁

𝐵

Further passes – Merge B−1 runs.
Last pass – Produces 1 run of N pages.
Total I/O cost – 2N (# of passes) = 2N (1+⌈ ⌉)𝑙𝑜𝑔

𝐵−1
⌈ 𝑁

𝐵 ⌉

(a) You have 4 buffer pages and your file has a total of 108 pages of records to sort. How many
passes would it take to sort the file?
Pass 1 - ceil(108/4) = 27 sorted runs of 4 pages each
Pass 2 - ceil(27/3) = 9 sorted runs of 12 pages each
Pass 3 - ceil(9/3) = 3 sorted runs of 36 pages each
Pass 4 - Sorted file (1 run)
Total = 4 passes

(b) How many runs would each pass produce?
Pass 1 - 27 sorted runs (of 4 pages each)
Pass 2 - 9 sorted runs (of 12 pages each)
Pass 3 - 3 sorted runs (of 36 pages each)
Pass 4 - 1 sorted run (of 108 pages)

(c) What is the total cost for this sort process in terms of I/O?
4 passes * 2 (read + write per pass) * 108 (pages in the file) = 864 I/Os

(d) If the pages were already sorted individually, how many passes would it take to sort the file
and how many I/Os would it be instead?
These pages are individually sorted, so because we don’t know how the pages will be
sorted together, the IO cost does not change! Pass 0 is still going to need to produce
ceil(N/B) sorted runs of B pages each, and so on and so forth. As a result, you would still
require 4 passes and 864 IOs.

(e) If we wanted to sort N pages in at most p total passes, write an expression relating the minimum
of buffer pages B needed with N and p. What do you notice about B when p = 1?
Since we want (# of passes after pass 1) ≤ p−1, we set the equation

≤ p−1 (we𝑙𝑜𝑔
𝐵−1

𝑁
𝐵()

remove the ceilings since we want to minimize B). Rearranging results in .𝐵(𝐵 − 1)𝑝−1 ≥ 𝑁
If p = 1, this means that B ≥ N which, conceptually, means that if we want to sort N pages
in 1 pass, all of them must fit into memory at the same time.

2 Hashing
Given – N pages to hash, B buffer pages in memory
Initial partitioning – Read in N pages and hash into B - 1 partitions. Write out

(# of pages in partition i)
𝑖=1

𝐵−1

∑

Recursive partitioning – For each individual partition, recursively partition if its size s > B.
Building in-memory hash table – Once a partition's size , read in s pages, build an in-memory𝑠 ≤ 𝐵
hash table, and write out s pages.

(a) What are some use-cases in which hashing is preferred over sorting?

Removing duplicates, when partition phase can be omitted or shortened.
Operations that require only data rendezvous (matching data must be together) and no order requirements
- such as GROUP BY without ORDER BY.

(b) Suppose we have B buffer pages and can process B(B - 1) pages of data with External Hashing in two
passes. For this case, fill in the blanks with the appropriate # of pages.
_______ input buffer(s)

_______ partitions after pass 1

_______ pages per partition

1 input buffer

B - 1 partitions after pass 1

B pages per partition

(c) If you are processing exactly B(B - 1) pages of data with external hashing, is it likely that you’ll have
to perform recursive external hashing? Why or why not?

Yes. To avoid additional recursive external hashing, you would have to have an absolutely perfect hash
function that evenly distributes records into the B - 1 partitions. This is almost impossible in practice. We
should expect that some partitions may have more than B pages after partition hashing.

(d) If we have 10 buffer pages, what is the maximum number of pages we could externally hash in 3
passes? Assume a perfectly uniform hash function for each pass.

B-1 partitions can be made on both the first and second partitioning passes. Since we are limited to three
passes total, the last pass must be the conquer pass, which requires each partition is size B to maximize
the amount of pages hashed. Thus:

= = 810 pages𝐵(𝐵 − 1)2 10 * 92

(e) We want to hash N = 100 pages using B = 10 buffer pages. Suppose in the initial partitioning pass, the
pages are unevenly hashed into partitions of 10, 20, 20, and 50 pages. Assuming uniform hash functions
are used for every partitioning pass after this pass, what is the total I/O cost for External Hashing?

634 I/Os. (I/Os are in bold) 100 pages are read and hashed into partitions of size 10, 20, 20, and 50.
Summing these results in 100 pages written.

The partition of size 10 can fit into memory (10 (B = 11)) so we can build the in-memory hash table for≤
it. This involves reading in 10 pages, building the hash table, and writing 10 pages.

Since the partitions of sizes 20 and 50 cannot fit into memory, they must be recursively partitioned. For
one of the partitions of size 20, 20 pages are read, hashed into 9 partitions of size 3 (⌈ ⌉ = ⌈ ⌉ = 3),20

𝐵−1
20
9

and thus 27 pages are written (9 partitions x 3 pages/partition). Since each of these partitions of size 3 can
now fit into memory, we read in a total of 27 pages, build the in-memory hash tables for each partition,
and write out 27 pages. The same process after the initial partition is repeated for the other partition of
size 20 which results in another 20+27+27+27 = 101 I/Os.

For the partition of size 50, 50 pages are read, hashed into 9 partitions of size 6 (⌈ ⌉ = ⌈ ⌉ = 6),50
𝐵−1

50
9

and thus 54 pages are written (9 partitions x 6 pages/partition). Since each of these partitions of size 6 can
now fit into memory, we read in a total of 54 pages, build the in-memory hash tables for each partition,
and write out 54 pages.

Summing all I/Os results in a total of 634 I/Os.

Here's a visualization of the hashing process. Squares represent partitions with its size, red arrows
represent reads, blue arrows represent writes, a green square indicates that a partition can fit into memory
and thus the in-memory hash table for it can be built, and circles represent building hash tables. Adding
all reads and writes results in 634 I/Os.

