
Iterators and Joins

Discussion 6

Announcements

Vitamin 6 (Iterators and Joins) due Monday, March 4 at 11:59pm

Project 3 (Joins and QO) part 1 due Wednesday, March 6 at 11:59pm

Agenda

I. Iterators
II. Joins

A. SNLJ
B. PNLJ
C. BNLJ
D. INLJ
E. Sort-Merge Join
F. Grace Hash Join

III. Worksheet

Iterators

Iterators

● Interface for iterating through data (making a single pass
through the data)

● Important methods of an iterator are:
○ hasNext: is there another piece of data left
○ next: get the next piece of data

● Using an iterator is kind going through a linked list - no
support for random access
○ You can’t (efficiently) say: fetch me the 50th item, then

30th, then 70th

Iterators

● Recall: relational operators operate on relations and return
relations

● We can implement this as: operate on an iterator (of the
input relation) and return an iterator (of the output)
○ Optionally choose if we wish to materialize the output

relation (write it to disk) or stream it to the next
operator

Iterators

● If we have: πid(σname > ‘A’(R))
○ σ operator takes iterator over R, returns iterator that filters

out tuples that don’t satisfy predicate
○ π operator takes in iterator from σ operator and returns

tuples with only the id field
○ Materializing the relation returned from σname > ‘A’(R) not

needed: π makes only one pass over the data
■ Only need one page of R in memory at once

Joins

Joins

● We’ll be looking at inner (equi) joins
○ Algorithms can be pretty easily extended to left/right

outer joins
○ Full joins require more thought - not in scope
○ Some algorithms work for non-equi-joins, others don’t

● A join is: taking one relation, and matching each tuple with
tuples from another relation

● The join condition/predicate determines what rows in
the other relation match to a row in the first relation

Joins

● Bit of notation:
○ [R] = number of pages in R
○ pR = number of records per page in R
○ |R| = number of records in R (the cardinality of R)

■ |R| = pR * [R]
● We typically exclude the final write’s I/O cost

○ Don’t add the cost of writing the joined output to disk
■ We might decide to stream it to the next operator

instead of materializing results!

Simple Nested Loop Join (SNLJ)

● Direct translation of the definition of join into code
● To perform the join R ⋈𝜃 S, just take each row in R, and scan

through S to find the matching rows!
○ for each row r in R:

■ for each row s in S:
● if 𝜃(r, s): output r joined with s

Which relation should
we pick as R and S
respectively?

Worksheet Q1a

How many disk I/Os are needed to
perform a simple nested loop join?

Companies: (company_id, industry, ipo_date)

Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● Join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered B+ indexes on C.company_id

and N.company_id
● For both indexes, assume it takes 2 I/Os

to access a leaf

Worksheet Q1a

How many disk I/Os are needed to
perform a simple nested loop join?

Companies: (company_id, industry, ipo_date)

Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered B+ indexes with height 1 on

C.company_id and N.company_id

C ⋈ N

Cost is [C] + |C| * [N] = [C] + pC [C] [N]

= 50 + 50 * 50 * 100 = 250,050 I/Os

N ⋈ C

Cost is [N] + |N| * [C] = [N] + pN [N] [C]

= 100 + 100 * 100 * 50 = 500,100 I/Os

I/O cost for SNLJ: min(500,100, 250,050) = 250,050 I/Os

Page Nested Loop Join (PNLJ)

● Can we do better?
○ We scan S for every row in R, but we had to load an

entire page of R into memory to get that row!
○ Instead of finding the rows in S that match a row in R,

do the check for all rows in a page in R at once

Page Nested Loop Join (PNLJ)

● SNLJ
○ for each row r in R:

■ for each row s in S:
● if 𝜃(r, s): output r joined with s

Page Nested Loop Join (PNLJ)

● SNLJ (but with page fetches written out explicitly)
○ for each page PR in R:

■ for each row r in PR:
● for each page PS in S:

○ for each row s in PS:
■ if 𝜃(r, s): output r joined with s

Page Nested Loop Join (PNLJ)

● PNLJ
○ for each page PR in R:

■ for each page PS in S:
● for each row r in PR:

○ for each row s in PS:
■ if 𝜃(r, s): output r joined with s

Block Nested Loop Join (BNLJ)

● Can we do even better?
○ We only use three page of memory for PNLJ (one

buffer for R, one buffer for S, one output buffer), but we
usually have more memory!

○ Instead of fetching one page of R at a time, why not
fetch as many pages of R as we can fit (B - 2 pages)!

Block Nested Loop Join (BNLJ)

● PNLJ
○ for each page PR in R:

■ for each page PS in S:
● for each row r in PR:

○ for each row s in PS:
■ if 𝜃(r, s): output r joined with s

Block Nested Loop Join (BNLJ)

● BNLJ
○ for each block of B - 2 pages CR = {P1, P2, ... , PB - 2}

in R:
■ for each page PS in S:

● for each row r in CR:
○ for each row s in PS:

■ if 𝜃(r, s): output r joined with s

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

R S B = 4

Output Buffer

BNLJ

Worksheet Q1b

How many disk I/Os are needed to
perform a block nested loop join?

Companies: (company_id, industry, ipo_date)

Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered B+ indexes with height 1 on

C.company_id and N.company_id

Worksheet Q1b

How many disk I/Os are needed to
perform a block nested loop join?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered B+ indexes with height 1 on

C.company_id and N.company_id

B = 20, block size = B - 2 = 18

C ⋈ N

Cost is [C] + ⌈[C] / B - 2⌉ * [N]

= 50 + ⌈50 / 18⌉ * 100 = 350 I/Os

N ⋈ C

Cost is [N] + ⌈[N] / B - 2⌉ * [C]

= 100 + ⌈100 / 18⌉ * 50 = 400 I/Os

I/O cost for BNLJ: min(350, 400) I/Os = 350 I/Os

Index Nested Loop Join (INLJ)

● A join is essentially:
○ for each row r in R:

■ for each row s in S that satisfies 𝜃(r, s):
● output r joined with s

Index Nested Loop Join (INLJ)
● An index on S allows us to do the inner loop efficiently!

○ for each row r in R:
■ for each row s in S that satisfies 𝜃(r, s)

(found using the index):

● output r joined with s

Index Nested Loop Join (INLJ)

● What’s the I/O cost?
○ [R] + |R| * cost to find matching S tuples

■ [R] from scanning through R
○ Cost to find matching S tuples:

■ Alternative 1: cost to traverse root to leaf + read all the
leaves with matching tuples

■ Alternative 2/3: cost of retrieving RIDs (similar to Alternative
1) + cost to fetch actual records
● 1 I/O per page if clustered, 1 I/O per tuple if not

Index Nested Loop Join (INLJ)

● What’s the I/O cost?
○ [R] + |R| * cost to find matching S tuples

■ [R] from scanning through R
○ If we have no index, then the only way to search for matching S

tuples is by scanning all of S → SNLJ, PNLJ, BNLJ, etc.
■ Cost to find matching S tuples is then [S], giving us the

formula for SNLJ cost

Index Nested Loop Join (INLJ)

Index on S.col

43

5

11

R.col

Output

Index Nested Loop Join (INLJ)

Index on S.col

43

5

11

R.col

Output

Index Nested Loop Join (INLJ)

Index on S.col

43

5

11

R.col

not a match

Output

Index Nested Loop Join (INLJ)

Index on S.col

43

5

11

R.col

Output

Index Nested Loop Join (INLJ)

Index on S.col

43

5

11

R.col

Output

Worksheet Q1c

How many disk I/Os are needed to
perform an index nested loop join?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered alternative 3 B+ indexes with

height 1 on C.company_id and
N.company_id. Throughout the problem
assume no index nodes are cached.

Worksheet Q1c

How many disk I/Os are needed to
perform an index nested loop join?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered alternative 3 B+ indexes with

height 1 on C.company_id and
N.company_id. Throughout the problem
assume no index nodes are cached.

C ⋈ N
Cost is [C] + |C| * cost of searching N
= 50 + (50 * 50) * (2 + 4) = 15,050 I/Os

N ⋈ C
Cost is [N] + |N| * cost of searching C
= 100 + (100 * 100) * (2 + 1) = 30,100 I/Os

I/O cost: min(30,100, 15,050) = 15,050 I/Os

Worksheet Q1d

Now assume the index on
NYSE.company_id is clustered. What is
the cost of an index nested loop join
using companies as the outer relation?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered alternative 3 B+ indexes with

height 1 on C.company_id and
N.company_id. Throughout the problem
assume no index nodes are cached.

Worksheet Q1d

Now assume the index on
NYSE.company_id is clustered. What is
the cost of an index nested loop join
using companies as the outer relation?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● We want to join Companies and NYSE on

C.company_id = N.company_id
● company_id is the primary key for

Companies
● For every tuple in Companies, assume

there are 4 matching tuples in NYSE
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page
● Unclustered alternative 3 B+ indexes with

height 1 on C.company_id and
N.company_id. Thoughout the problem
assume no index nodes are cached.

C ⋈ N

Cost is [C] + |C| * cost of searching N

= 50 + 50 * 50 * (2 + # pages of matching tuples)

= 50 + 50 * 50 * (2 + ceil(# matches /pN))

= 50 + 50 * 50 * (2 + ceil(4/100)) = 7550 I/Os

Sort-Merge Join (SMJ)

● What if we process the data a bit before we join things
together?
○ For example, sort both relations first! Then we can join

them efficiently
○ In some cases, we might even have one of the

relations already sorted on the right key, and then we
don’t even have to spend time sorting it!

Sort-Merge Join (SMJ)

● First step: sort both R and S (with external sorting)
● Second step: merge matching tuples from R and S

together
○ We do this efficiently by moving iterators over sorted R

and sorted S in lockstep: move the iterator with the
smaller key
■ We know that this key is smaller than all remaining

key values in the other relation, so we’re
completely done joining that tuple!

Sort-Merge Join (SMJ)

● First step: sort both R and S (with external sorting)
● Second step: merge matching tuples from R and S

together
○ Need a bit more care than this: we might have multiple

rows in R matching with multiple rows in S
■ Mark the first matching row in S, match tuples with

the first matching row in R, then reset the iterator
to the mark so we can go through the rows in S
again for the second matching row in R

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join
sid sname

22 dustin

28 yuppy

31 lubber

31 lubber2

44 guppy

57 rusty

sid bid
28 103
28 104
31 101
31 102
42 142
58 107

while not done {
 while (r < s) { advance r }
 while (r > s) { advance s }

 mark s // save start of “block”
 while (r == s) {
 // Outer loop over r
 while (r == s) {
 // Inner loop over s
 yield <r, s>
 advance s
 }
 reset s to mark
 advance r
 }
}

sid sname bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102
31 lubber2 101
31 lubber2 102

Sort-Merge Join (SMJ)

● I/O cost?
○ Cost of sorting R
○ Cost of sorting S
○ The merge step: [R] + [S]

■ Only one pass (if we assume there aren’t a lot of
duplicates)

Sort-Merge Join (SMJ)

● An optimization we can sometimes make
○ Recall materialization (write + read) is expensive
○ We only have to (assuming no duplicate values in R)

make one pass through the sorted relation → we don’t
need the sorted relations to be materialized!

○ In the final merge pass of sorting both relations,
instead of writing the sorted relations to disk, we can
stream them into the second part of SMJ!
■ Reduces I/O cost by 2*([R] + [S])!

Sort-Merge Join (SMJ)

● An optimization we can sometimes make
○ In the final merge pass of sorting both relations, instead of writing the

sorted relations to disk, we can stream them into the second part of
SMJ!
■ Since we are iterating over R and S anyway, we can begin

outputting what will join from the two relations
■ We have to be able to fit the input buffers of the last merge pass of

sorting R and sorting S in memory, as well as have one output
buffer for joined tuples

■ Need: # runs in last merge pass for R + # runs in last merge pass
for S ≤ B - 1

Worksheet Q1e

In the average case, how many disk I/Os
are needed to perform a sort-merge join
(unoptimized/optimized)?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page

Worksheet Q1e

How many disk I/Os are needed to
perform a sort-merge join
(unoptimized/optimized)?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page

Unoptimized:

Sorting N:

Pass 1 - ceil(100/20) = 5 sorted runs of 20 pages

each

Pass 2 - ceil(5/19) = 1 sorted run of 100 pages each

Total I/Os: 4 * (100 pages) = 400 I/Os

Sorting C:

Pass 1 - ceil(50/20) = 3 sorted runs of 20

pages, 20 pages, and 10 pages

Pass 2 - ceil(3/19) = 1 sorted run of 50 pages

Total I/Os: 4 * (50 pages) = 200 I/Os

Merging: [C] + [N] = 150 I/Os

Total SMJ I/Os: 200 + 400 + 150 = 750 I/Os

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages

1 input buffer

1 input buffer

…

1 input buffer

1 output buffer 1 sorted run of 100 pages

100

100Sorted Runs of N 20 Buffers

100 pages

Relation N

100 100

 I/Os:
● Sorting N: 400
● Sorting C: ??
● Merging: ??

Sorted Relation N

Read, Write, Merge

Unoptimized SMJ

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 10 pages

1 input buffer

1 input buffer

…

1 input buffer

1 output buffer 1 sorted run of 50 pages

50

50
Sorted Runs of C

20 Buffers

50 pages

Relation C

50 50

 I/Os:
● Sorting N: 400
● Sorting C: 200
● Merging: ??

1 sorted run of 100 pages

Sorted Relation N

Sorted Relation C

Read, Write, Merge

Unoptimized SMJ

1 sorted run of 50 pages

 I/Os: 750
● Sorting N: 400
● Sorting C: 200
● Merging: 150

1 sorted run of 100 pages

Sorted Relation N

Sorted Relation C

Joined Relation C and N150

Read, Write, Merge

Unoptimized SMJ

Worksheet Q1e

How many disk I/Os are needed to
perform a sort-merge join
(unoptimized/optimized)?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page

Can we perform the SMJ optimization?

Sorting N:

Pass 0 - ceil(100/20) = 5 sorted runs of 20 pages

each

Pass 1 - ceil(5/19) = 1 sorted run of 100 pages each

Total I/Os: 4 * (100 pages) = 400 I/Os

Sorting C:

Pass 0 - ceil(50/20) = 3 sorted runs of 20

pages, 20 pages, and 10 pages

Pass 1 - ceil(3/19) = 1 sorted run of 50 pages

Total I/Os: 4 * (50 pages) = 200 I/Os

Worksheet Q1e

How many disk I/Os are needed to
perform a sort-merge join
(unoptimized/optimized)?

Companies: (company_id, industry, ipo_date)
Nyse: (company_id, date, trade, quantity)

● 20 pages of memory
● [N] = 100 pages, pN = 100 tuples per page
● [C] = 50 pages, pC = 50 tuples per page

Can we perform the SMJ optimization?

Yes.

During the 2nd to last pass, we produce 5 sorted runs of N and 3 sorted runs of C. Since the

number of runs of C + the number of runs of N ≤ 20 - 1, we can optimize sort merge join and

combine the last sorting pass and final merging pass to save 2 * ([C] + [N]) I/Os.

Total I/Os = 750 - 2(50+100) = 450 I/Os

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 20 pages
1 input buffer

1 input buffer

…

1 input buffer

1 output buffer

100
Sorted Runs of N

20 Buffers

100 pages

Relation N

100 100

 I/Os: cost(unoptimized SMJ) - 2([C] + [N])
= 750 - 2(150)
= 450

Read, Write

Optimized SMJ

1 sorted run of 20 pages

1 sorted run of 20 pages

1 sorted run of 10 pages

50

Sorted Runs of C

50 pages

Relation C

50 50 Joined Relation C and N

N and C are streamed to join operation!
● Saved 1 write and 1 read for each relation
● i.e. saves 2([C] + [N]) I/Os

Criteria for optimization:
of runs for N + # of runs for S <= B-1
5 + 3 <= 19 ✔

Grace Hash Join

● Same idea as SMJ, but let’s build some hash tables
instead

● Two passes: partition the data, then build an in-memory
hash table and probe it
○ First, partition R and S into B - 1 partitions (like in

external hashing), using the same hash function
■ All the tuples in R matching a tuple in S must be in

the same partition → we can consider each
partition independently

Grace Hash Join

● Same idea as SMJ, but let’s build some hash tables instead
● Two passes: partition the data, then build an in-memory hash

table and probe it
○ Then, build an in-memory hash table for a partition of R
○ We can use this in-memory hash table to find all the tuples

in R that match a tuple in S
■ Stream in tuples of S, probe the hash table, output

matching tuples

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join: Partition

Grace Hash Join

● We need partitions of R (but not S) to fit in B - 2 pages
○ 1 page reserved for streaming S partition
○ 1 page reserved for streaming output

● What if partitions of R are too big?
○ If S is smaller, do S ⋈𝜃 R instead
○ Recursively partition! Make sure that for any partition

of R you recursively partition, the matching S partition
is also recursively partitioned!

Grace Hash Join

Pass 2: Build and Probe

● Build an in-memory hash table for a partition of R
● Stream in tuples of S, probe the hash table, output

matching tuples

Grace Hash Join: Build & Probe

Build in-memory hash table of R and stream in tuples of S

Grace Hash Join: Build & Probe

Build in-memory hash table of R and stream in tuples of S

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Build in-memory hash table of R and stream in tuples of S

Grace Hash Join: Build & Probe

Build in-memory hash table of R and stream in tuples of S

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

Probe in-memory hash table of R and stream out matching tuples of S and R

Grace Hash Join: Build & Probe

…
Probe in-memory hash table of R and stream out matching tuples of S and R

Worksheet

Worksheet Q2a

If we had 10 buffer pages, how many
partitioning phases would we require
for grace hash join?

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

T is smaller, so we need its partitions to be at

most B - 2 = 8 pages. After 1 partitioning

pass, we have partitions of size 6, which is <=

8 so we only need 1 partitioning pass.

Worksheet Q2a

If we had 10 buffer pages, how many
partitioning phases would we require
for grace hash join?

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Worksheet Q2b

What is the IO cost for the grace hash join then?
Assume uniform partitioning.

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

We need 1 partitioning pass.

Partitioning phase:

ceil([C]/(B - 1)) = 12 pages per partition for C, 12(9) pages in total after partitioning

ceil([T]/(B - 1)) = 6 pages per partition for T, 6(9) pages in total after partitioning

Partitioning IOs: 100 I/Os to read from Catalog + 12(9) to write for Catalog + 50
I/Os to read from Transactions + 6(9) to write for Transactions = 312 I/Os

Probing phase: 12(9) + 6(9) = 162 I/Os to read from Catalog and Transactions

Total: 312 + 162 = 474 I/Os

Worksheet Q2b

What is the IO cost for the grace hash join then?
Assume uniform partitioning.

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Worksheet Q2c

If we only had 8 buffer pages, how
many partitioning phases would there
be?

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Worksheet Q2c,d
● B = 8
● [C] = 100 pages
● [T] = 50 pages
● Assume the hash functions uniformly

distribute the data for both tables.

disk disk

15 pages
of C

8 pages of
T

100 pages
of C

50 pages
of T

Read into memory

7 partitions, each with

Write to disk

In memory:
Using 1 input buffer,

B-1 = 7 output buffers

Pass 1: Partition

The partitions for neither table
fit in B-2 = 6 pages, so we
must recursively partition.

3 pages of
C

2 pages of
T

49 partitions, each with

In memory:
Using 1 input buffer,

B-1 = 7 output buffers
disk

Write to diskRead into memory

Pass 2: Partition

The partitions for at least 1 table
fit in B-2 = 6 pages, so we can
enter the Build and Probe
phase.

Worksheet Q2c,d

disk

B-2 buffer
pages:

Hash Table on C

1 Input Buffer

1 Output Buffer

Read into
memory

Stream
output into

next
operator

Exclude I/O
cost of final

write!

Build and
Probe

3 pages of
C

2 pages of
T

49 partitions,
each with

● B = 8
● [C] = 100 pages
● [T] = 50 pages
● Assume the hash functions uniformly

distribute the data for both tables.

Worksheet Q2c,d

disk

B-2 buffer
pages:

Hash Table on T

1 Input Buffer

1 Output Buffer

Read into
memory

Stream
output into

next
operator

Exclude I/O
cost of final

write!

Build and
Probe

3 pages of
C

2 pages of
T

49 partitions,
each with

● B = 8
● [C] = 100 pages
● [T] = 50 pages
● Assume the hash functions uniformly

distribute the data for both tables.

Note: We can alternatively build a hash
table on T and probe C since partitions
for either relation fit in B-2 pages.

T is smaller, so we need its partitions to be at most B -

2 = 6 pages. After 1 partitioning pass,

we have partitions of size 8, which is too big to fit in

B-2 buffer pages. We need a second

partitioning pass. 8 / 7 = 1.1→2 pages, which is small

enough to fit in B-2 buffer pages.

Therefore, we need 2 passes in total.

Worksheet Q2c

If we only had 8 buffer pages, how
many partitioning phases would there
be?

● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Worksheet Q2d

What will be the IO cost? ● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Partitioning phase:

ceil([C]/(B - 1)) = 15 pages per partition for C

ceil([T]/(B - 1)) = 8 pages per partition for T

ceil([C]/(B - 1)) = 3 pages per partition for second pass for C

ceil([T]/(B - 1)) = 2 pages per partition for second pass for T

 Read 1st Write 1st Read 2nd Write 2nd

Partitioning IOs: [100 + 50] + [15(7) + 8(7)] + [15(7) + 8(7)] + [3(49) + 2(49)] = 717 I/Os

Build and Probe Phase: 3(49) + 2(49) = 245 IOs

Total: 717 + 245 = 962 I/Os

Worksheet Q2d

What will be the IO cost? ● 2 tables: Catalog and Transactions
● [C] = 100 pages, pC = 20 tuples per page
● [T] = 50 pages, pT = 50 tuples per page
● Assume the hash functions uniformly

distribute the data for both tables.

Attendance Link

https://cs186berkeley.net/attendance

https://cs186berkeley.net/attendance

