
Discussion 7
Selectivity and Query Optimization

Announcements

Vitamin 7 (Query Optimization) due Monday, March 11 at 11:59pm

Project 3 Part 1 due Wednesday, March 6 at 11:59PM

Selectivity Estimation

Selectivity Estimation

● To estimate cost of a query, we add up the estimated costs
of each operator (step) in the query
○ Need to know the size of the intermediate relations (table

generated between operators) in order to do this!
■ Need selectivity of predicates - what % of tuples are

selected by a predicate - to estimate intermediate
relation’s size

NOTE: These are all estimates: if we don’t know, approximate
(we use selectivity = 1/10 in this class as a default)

Predicate Selectivity Assumption

c = v 1 / (number of distinct values of c in index) We know |c|.

c = v 1 / 10 We don’t know |c|.

c1 = c2 1 / MAX(number of distinct values of c1, number of
distinct values of c2)

We know |c1| and |c2|.

c1 = c2 1 / (number of distinct values of ci) We know |ci| but not |other column|.

c1 = c2 1 / 10 We don't know |c1| or |c2|.

● |column| = the number of distinct values for the column
● If you have an index on the column, you can assume you know

|column|, max(c), and min(c)
● When applying selectivity to # of records, take the floor of the

result. (e.g. 256.3 → 256 records)

Selectivity Estimation - Equalities

Predicate Selectivity Assumption

c < v
c > v

(v - min(c)) / (max(c) - min(c) + 1)
(max(c) - v) / (max(c) - min(c) + 1)

We know max(c) and min(c).
c is an integer.

c < v
c > v

1 / 10 We don’t know max(c) and min(c).
c is an integer.

c <= v

c >= v

(v - min(c)) / (max(c) - min(c) + 1) + (1 / |c|)

(max(c) - v) / (max(c) - min(c) + 1) + (1 / |c|)

We know max(c) and min(c).
c is an integer.

c <= v
c >= v

1 / 10 We don’t know max(c) and min(c).
c is an integer.

Selectivity Estimation - Inequalities on Integers

NOTICE: We add 1 to the denominator in order for our [low, high] range to be inclusive.
E.g. range [2, 4] = 2, 3, 4 → (4 - 2) + 1 = 3

Predicate Selectivity Assumption

c >= v (max(c) - v) / (max(c) - min(c)) We know max(c) and min(c).
c is a float.

c >= v 1 / 10 We don’t know max(c) and min(c).
c is a float.

c <= v (v - min(c)) / (max(c) - min(c)) We know max(c) and min(c).
c is a float.

c <= v 1 / 10 We don’t know max(c) and min(c).
c is a float.

Selectivity Estimation - Inequalities on Floats

NOTICE: We don’t add 1 to the denominator. floats are continuous, integers are
discrete)
E.g. range [2.0, 4.0] = 2.0, 2.1, …, 3.9, 4.0 → 4.0 - 2.0 = 2.0

Predicate Selectivity Assumption

c >= v (max(c) - v) / (max(c) - min(c) + 1) We know max(c) and min(c).
c is an integer.

c >= v (max(c) - v) / (max(c) - min(c)) We know max(c) and min(c).
c is a float.

Selectivity Estimation - Inequalities Ints vs Floats

min(c) max(c)

With ints, we need to account
for min(c) and max(c) inclusive.
Assume min is 2 and max is 4,
then have a total of 4 - 2 + 1 = 3
possible values.

min(c) max(c)

With floats, need to account
for continuous area between
min(c) and max(c). Assume
min is 2 and max is 4, then
length of range is 4 - 2 = 2.

Predicate Selectivity Assumption

p1 AND p2 S(p1)*S(p2) Independent predicates

p1 OR p2 S(p1) + S(p2) - S(p1 AND p2)

NOT p 1 - S(p)

Selectivity Estimation - Connectives

How many tuples are selected
by the following query?

SELECT * FROM R

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

1000 tuples

(no predicates, select all)

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a = 42;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

WHERE a = 42;

50 unique values in a

1/50 * (1000 tuples) = 20 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE c = 42;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

WHERE c = 42;

no information about c

1/10 * (1000 tuples) = 100 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

WHERE a <= 25;

Sel(a <= 25)

= (25 - 1)/(50 - 1 + 1) + 1/50

= 1/2

1/2 * (1000 tuples) = 500 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE b <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected

by the following query?

SELECT * FROM R

WHERE b <= 25;

Sel(b <= 25)

= (25 - 1)/(100 - 1)

= 24/99 = 0.2424...

floor(0.2424... * (1000 tuples)) = 242 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE c <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the following
query?

SELECT * FROM R

WHERE c <= 25;

no information about c

1/10 * (1000 tuples) = 100 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a <= 25

 AND b <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected

by the following query?

SELECT * FROM R

WHERE a <= 25

 AND b <= 25;

Sel(a <= 25) * Sel(b <= 25)
= ½ * 24/99 = 0.1212...

floor(0.1212... * (1000 tuples)) = 121 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a <= 25

 AND c <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

WHERE a <= 25

 AND c <= 25;

Sel(a <= 25) * Sel(c <= 25)
= ½ * 1/10 = 1/20

1/20 * (1000 tuples) = 50 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a <= 25

 AND a > 10;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by the
following query?

SELECT * FROM R

WHERE a <= 25

 AND a > 10;

sel(10 < a <= 25)
= (25 - 10) / 50 = 0.3
0.3 * (1000 tuples) = 300 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1,
50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a <= 25

 OR b <= 25;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected

by the following query?

SELECT * FROM R

WHERE a <= 25

 OR b <= 25;

Sel(a <= 25) + Sel(b <= 25)
- Sel(a <= 25) * Sel(b <= 25)

= ½ + 24/99 - ½ * 24/99
= 0.62121...

0.62121... * (1000 tuples) = 621 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R

WHERE a = c;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected by
the following query?

SELECT * FROM R

WHERE a = c;

no information about c
1/50 * (1000 tuples) = 20 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• index on b with 100 unique
float values, uniformly
distributed in the range [1, 100]

• no index on c
• columns are independent

How many tuples are selected
by the following query?

SELECT * FROM R,S

WHERE R.a = S.a;

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on R.a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• S(a) has 500 tuples
• index on S.a with 25 unique

integer values, uniformly
distributed in the range [1, 25]

How many tuples are selected

by the following query?

SELECT * FROM R,S

WHERE R.a = S.a;

Sel(R.a = S.a)

= 1/MAX(50, 25) = 1/50

1/50 * (1000 tuples * 500 tuples) = 10,000 tuples

Selectivity Estimation - Worksheet

• R(a, b, c) has 1000 tuples
• index on R.a with 50 unique

integer values, uniformly
distributed in the range [1, 50]

• S(a) has 500 tuples
• index on S.a with 25 unique

integer values, uniformly
distributed in the range [1, 25]

Query Optimization

Iterators

● Recall: relational operators operate on relations and return
relations

● We can implement this as: operate on an iterator (of the
input relation) and return an iterator (of the output)
○ Optionally choose if we wish to materialize the output

relation (write it to disk) or stream it to the next
operator

• We can represent relational algebra
expressions as trees

• Order of operators affects I/Os and
resource usage, but not necessarily
output

π…(σ…(Sailors ⋈…
Reserves))
σ…(π…(Sailors ⋈…
Reserves))

Query Optimization - Background

s

Query Optimization - Alternate Plans
● Given a plan, some things we can do are:

○ Push selections/projections down the tree
■ The earlier we reduce the size of our input data, the fewer I/Os are

incurred as we traverse up the tree
■ Only affects I/O cost if materialized, or if operator only makes one pass

(so not right relation of BNLJ)

Query Optimization - Alternate Plans

● Given a plan, some things we can do are:
○ Push selections/projections down the tree
○ Materialize intermediate relations (write to a temp file)

■ Results in additional write I/Os, but is better in the long run
○ Use indices (e.g. INLJ)

Query Optimization - Materializing

⨝
PNLJ

Scan
A

𝝈age <

25

Scan
B

● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● Sel(B.age < 25) = 0.5, [B] = 100

Without materializing, we’re performing
𝝈age < 25 on the fly each time in PNLJ, and
scanning the entire table B for each page of A.
Cost = Scan A (50) + PNLJ (50*100)

 → 5,050 I/Os in total

Query Optimization - Materializing
⨝

PNLJ

Scan
A

𝝈age < 25

Scan
B

MAT

● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● Sel(B.age < 25) = 0.5, [B] = 100

By materializing the intermediate relation, we’re
applying 𝝈age < 25 before PNLJ, and performing the
join on the result of the selection.
Cost = Scan A (50) + Scan B (100)

 + Materialize (100 * 0.5) + PNLJ (50 * 50)
 → 2,700 I/Os in total

Query Optimization - Caution When Calculating Join Costs

● We cannot blindly apply the join cost formulas
● Join cost depends on whether previous operators materialize intermediate

relations OR stream them in as input
● Remember query optimization involves optimizing for the cheapest estimated

query plan across ALL passes; therefore, previous passes must be taken into
account

Query Optimization - Join Considerations

● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● B = 5 buffer pages

⨝
BNLJ

Scan
B

MAT

Scan
A

MAT ➔ Cost of performing this query plan involves cost
of scanning A & B + cost of materializing
intermediate relations + cost of joining A & B

➔ Cost = (50 + 100) + (50 + 100) +
50 + ⌈50/3⌉*100 = 2050 I/Os

➔ The last 2 terms come from the BNLJ formula,
and previous terms come from previous
operators

Query Optimization - Join Considerations

● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● B = 5 buffer pages

⨝
BNLJ

Scan
B

Scan
A

➔ Cost of performing this query plan involves cost
of joining A & B, which includes scan cost

➔ Cost = 50 + ⌈50/3⌉*100 = 1750 I/Os
➔ Here we apply the BNLJ formula directly since

there is no materialization and no other
operators that might reduce the number of
pages provided as input to the BNLJ operator

Query Optimization - Join Considerations
● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● B = 5 buffer pages
● Sel(A.age < 25) = 0.5

⨝
BNLJ

Scan
B

Scan
A

➔ Cost of performing this query plan involves cost
of joining A & B, which includes scan cost, and
also considering how many pages of A are
provided as input to the BNLJ operator

➔ Cost = 50 + ⌈25/3⌉*100 = 950 I/Os
➔ Only 25 pages from A move on to the join, so

the number of times B must be scanned
decreases (the last term)

𝝈age < 25

Query Optimization - Join Considerations
● Table A: takes 50 I/Os to perform a scan
● Table B: takes 100 I/Os to perform a scan
● B = 5 buffer pages
● Sel(B.age < 25) = 0.5

⨝
BNLJ

Scan
B

Scan
A

➔ Cost of performing this query plan involves cost of
joining A & B, which includes scan cost

➔ Cost = 50 + ⌈50/3⌉*100 = 1750 I/Os
➔ Since B is not materialized, each time B is scanned

(which happens ⌈50/3⌉ times) selection occurs
on-the-fly

➔ Takeaway: Pushing down selections has different
impacts on outer vs inner relation in BNLJ

𝝈age < 25

Query Optimization

● A query optimizer takes in a query plan (e.g. one directly translated from a
SQL query), and outputs a better (hopefully optimal) query plan
○ Works on and optimizes over a plan space (set of all plans

considered)
○ Performs cost estimation on query plans
○ Uses a search algorithm to search through plan space to find plan

with lowest cost estimate
■ May not be optimal (bad estimate, or small plan space)

● We’ll be looking at the System R optimizer (aka Selinger optimizer)
○ Plan space: only left-deep trees, avoid cartesian products unless

they’re the only option.
■ Left-deep trees represent a plan where all new tables are joined

one at a time from the right.
○ Cost estimation: actual Selinger optimizer incorporates both CPU

and I/O cost; we’ll only use I/O cost for this class
○ Search algorithm: dynamic programming

● System R does not perform any materialization by default

Query Optimization - Selinger

Query Optimization - Selinger

● Why only left-deep trees?
○ Join new tables one at a time from the right
○ Create an ordering in which to add tables to the query being

executed
○ Too many possible trees for joins

■ Using only left-deep trees: N! different ways to order relations
■ Including all permutations tree layouts: A very large number of

ways to parenthesize given an ordering (superexponential in N)

Query Optimization - Selinger

Left-deep

((A ⋈ B) ⋈ C) ⋈ D

Bushy

(A ⋈ B) ⋈ (C ⋈ D)

⋈

A B

⋈

C D

⋈

⋈

A B

C

⋈

⋈

D

⋈

A

B

C D

⋈

Right-deep

A ⋈ (B ⋈ (C ⋈ D))

⋈

Only consider left-deep plans!

Left-deep

((A ⋈ B) ⋈ C) ⋈ D

⋈

A B

⋈

C

A

B

C D

⋈

⋈

D ⋈

Right-deep

A ⋈ (B ⋈ (C ⋈ D))

Bushy

(A ⋈ B) ⋈ (C ⋈ D)

⋈ ⋈

A B

⋈

C D

⋈

Query Optimization - Selinger

● Search algorithm for Selinger: use dynamic programming
○ Runtime drops from n! to around n*2n

● To be considered, must be:
○ Left deep
○ No cartesian products (i.e. if we join R and S on <cond1> and

we join S and T on <cond2>, we don’t consider joining R and T
if there’s no condition)

Query Optimization - Selinger

● For n relations joined, perform n passes
○ on the i-th pass, output only the best plan for joining any i of

the n relations
○ Also keep around plans that have higher cost but have an

interesting order

Query Optimization - Interesting Orders

● Interesting orders are orderings on intermediate relations
that may help reduce the cost of later joins
○ ORDER BY attributes
○ GROUP BY attributes
○ downstream join attributes

Query Optimization - Selinger

● Pass 1: find minimum cost access method for each (relation, interesting
order) pair
○ Index scan, full table scans

A toy example:

SELECT *

FROM A, B, C

Pass 1:
• Full scan on A: 2 I/Os
• Index scan on A.b: 1 I/Os
• Full scan on B: 2 I/Os
• Full scan on C: 4 I/Os
• Index scan on C.c: 2 I/Os
• Index scan on C.d: 3 I/Os

Query Optimization - Selinger

● Pass 1: find minimum cost access method for each (relation, interesting
order) pair
○ Index scan, full table scans

A toy example:

SELECT *

FROM A, B, C

Pass 1:
• Full scan on A: 2 I/Os
• Index scan on A.b: 1 I/Os
• Full scan on B: 2 I/Os
• Full scan on C: 4 I/Os
• Index scan on C.c: 2 I/Os
• Index scan on C.d: 3 I/Os

Query Optimization - Selinger

● Pass i (Repeat until all relations are joined):
take in list of optimal plans for (i - 1 relations, interesting order) from Pass
i-1, and compute minimum cost plan for (i relations, interesting orders)
(every size i subset of the n relations)

Pass 2:
• Index scan on A.b: 1 I/Os
• Full scan on B: 2 I/Os
• Index scan on C.c: 2 I/Os

• A BNLJ B: 5 I/Os
• B INLJ A: 6 I/Os
• C PNLJ A: 6 I/Os
• B BNLJ C: 5 I/Os
• C INLJ B: 6 I/Os

Query Optimization - Selinger

● Pass i (Repeat until all relations are joined):
take in list of optimal plans for (i - 1 relations, interesting order) from Pass
i-1, and compute minimum cost plan for (i relations, interesting orders)
(every size i subset of the n relations)

Pass 2:
• Index scan on A.b: 1 I/Os
• Full scan on B: 2 I/Os
• Index scan on C.c: 2 I/Os

• A BNLJ B: 5 I/Os
• B INLJ A: 6 I/Os
• C PNLJ A: 6 I/Os
• B BNLJ C: 5 I/Os
• C INLJ B: 6 I/Os

Query Optimization - Selinger

● Pass i (Repeat until all relations are joined):
take in list of optimal plans for (i - 1 relations, interesting order) from Pass
i-1, and compute minimum cost plan for (i relations, interesting orders)
(every size i subset of the n relations)

Pass 3:
• A BNLJ B: 5 I/Os
• C PNLJ A: 6 I/Os
• B BNLJ C: 5 I/Os

• (AB) BNLJ C: 14 I/Os
• (CA) INLJ B: 13 I/Os
• (CA) BNLJ B: 12 I/Os
• (BC) PNLJ A: 13 I/Os

Query Optimization - Selinger

● Pass i (Repeat until all relations are joined):
take in list of optimal plans for (i - 1 relations, interesting order) from Pass
i-1, and compute minimum cost plan for (i relations, interesting orders)
(every size i subset of the n relations)

Pass 3:
• A BNLJ B: 5 I/Os
• C PNLJ A: 6 I/Os
• B BNLJ C: 5 I/Os

• (AB) BNLJ C: 14 I/Os
• (CA) INLJ B: 13 I/Os
• (CA) BNLJ B: 12 I/Os
• (BC) PNLJ A: 13 I/Os

Consider the relations R(a, b), S(b, c), and T(c, d) with:

• Alt 2 clustered indexes on R.b, S.b, T.c, and T.d
• Alt 2 unclustered index on R.a

Assume it takes 2 I/Os to reach the level above a leaf node and that no index
or data pages are ever cached. All indexes have 100 unique integer index
keys in the range [1, 100].

SELECT *

FROM R, S, T

WHERE R.b = S.b and S.c = T.c

AND R.a <= 50;

Query Optimization - Worksheet

Assume:
• R has 1000 data pages, 10000 records
• The index on R.a has 50 leaf pages
• The index on R.b has 100 leaf pages

1. How many IOs does a full scan on R take?

2. How many IOs does an index scan on R.a take?

3. How many IOs does an index scan on R.b take?

4. How many pages from R will advance to the next stage for all of these
access plans?

Query Optimization - Worksheet

Assume:
• R has 1000 data pages, 10000 records
• The index on R.a has 50 leaf pages
• The index on R.b has 100 leaf pages

1. How many IOs does a full scan on R take?
1000 IOs, need to read every data page

2. How many IOs does an index scan on R.a take?
Sel(R.a <= 50) = (50 - 1) / (100- 1 + 1) + (1/100) = ½
2 + ½*(50 leaf pages) + ½*(10000 records) = 5,027 IOs

Query Optimization - Worksheet

Assume:
• R has 1000 data pages, 10000 records
• The index on R.a has 50 leaf pages
• The index on R.b has 100 leaf pages

3. How many IOs does an index scan on R.b take?
No single table predicates on R.b, so we have to read in everything
2 + (100 leaf pages) + (1000 data pages) = 1102 IOs

4. How many pages from R will advance to the next stage for all of these
access plans?
Sel(R.a <= 50) = ½ and 10000 records / 1000 data pages = 10 records / page in table R
½*(10000 records) = 5000 records
5000 records / 10 records per page = 500 pages

Query Optimization - Worksheet

Assume the other single table access plans have the following IO costs:

• Full scan on S: 2000 I/Os
• Index scan on S.b: 2500 I/Os
• Full scan on T: 3000 I/Os
• Index scan on T.c 3500 I/Os
• Index scan on T.d: 3500 I/Os

Which single table access plans advance to the next stage?

Query Optimization - Worksheet

I/O costs from #1-4:
• Full scan on R: 1000 I/Os
• Index scan on R.a: 5207 I/Os
• Index scan on R.b: 1102 I/Os

• Full scan on S: 2000 I/Os
• Index scan on S.b: 2500 I/Os
• Full scan on T: 3000 I/Os
• Index scan on T.c 3500 I/Os
• Index scan on T.d: 3500 I/Os

Full scan on R (best overall plan for R)
Index scan on R.b (interesting order because R.b is used in a join)
Full scan on S (best overall plan for S)
Index scan on S.b (interesting order because S.b is used in a join)
Full scan on T (best overall plan for T)
Index scan on T.c (produces interesting order on T.c)

Query Optimization - Worksheet
I/O costs from #1-4:

• Full scan on R: 1000 I/Os
• Index scan on R.a: 5207 I/Os
• Index scan on R.b: 1102 I/Os

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

a. R BNLJ S

i. Which single table access plans for R and S will minimize the cost of
this join?

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

a. R BNLJ S

i. Which single table access plans for R and S will minimize the cost of
this join?

Since this is a (block) nested loop join, the order of the tuples does not reduce
the I/O cost. Therefore, the cheapest single table access plans will be chosen.
This means a full scan will be used for both R and S, since those are the best
overall plans that advanced from the last stage.

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

a. R BNLJ S

ii. What is the I/O cost for R join S? Assume we have 52 buffer pages.

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

a. R BNLJ S

ii. What is the I/O cost for R join S? Assume we have 52 buffer pages.

[R] + ceil([R (after selection)] / B-2) * [S] = 1000 + ceil(500 / 50) * 2000 = 21,000
We have an initial cost of 1000 I/Os to do a full scan on R, but since we push
down the selection on R.a, only 500 pages of R will be passed along to the
BNLJ operator. This means that the rest of the join will cost (500/50)(2000),
since we scan all of S for each chunk from R of size 500/50 = 10.

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

b. R SMJ S
i. Which single table access plans for R and S will minimize the cost of

this join?

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

b. R SMJ S
i. Which single table access plans for R and S will minimize the cost of

this join?

If the Sort Merge Join operator is passed the pages of R and S already sorted
on the columns R.b and S.b respectively, then the sort part of SMJ can be
avoided. Therefore, the query optimizer will perform index scans on R.b and
S.b before performing the SMJ.

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

b. R SMJ S

ii. What is the I/O cost for R join S? Assume we have 52 buffer pages.

Query Optimization - Worksheet

With the tables:
R: 1000 data pages, 10000 records
S: 2000 data pages, 40000 records
T: 3000 data pages, 30000 records

b. R SMJ S

ii. What is the I/O cost for R join S? Assume we have 52 buffer pages.

sort(R) + sort(S) + ([R] + [S]) = 0 + 0 + (1102 + 2500) = 3602 I/Os

No need to sort either table because index scans on R.b and S.b would result
in sorted order already. Thus, the cost is just to merge, which involves simply
scanning the tuples.

Query Optimization - Worksheet

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Which of these joins will actually be considered by the query optimizer on
pass 2?

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Which of these joins will actually be considered by the query optimizer on
pass 2?

Don’t consider cross joins (any joins involving R and T, for this query)

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Which of these joins will advance to the next pass of the query optimizer?

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Which of these joins will advance to the next pass of the query optimizer?

None of the joins produce an interesting order (no downstream joins, ORDER
BY, GROUP BY). Only consider best join for each considered set of tables

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Will any of these remaining joins produce an interesting order?

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Assume the rest of the join IO costs are as follows

1. R BNLJ S: 1.a IOs
2. R SMJ S: 1.b IOs
3. S BNLJ R: 18,000 IOs
4. S SMJ R: 3,000 IOs
5. R BNLJ T: 30,000 IOs
6. R SMJ T: 40,000 IOs

Will any of these remaining joins produce an interesting order?

No, S SMJ R uses column b (not interesting), S SMJ T uses column c (not
interesting)

Query Optimization - Worksheet

7. T BNLJ R: 35,000 IOs
8. T SMJ R: 20,000 IOs
9. S BNLJ T: 15,000 IOs
10. S SMJ T: 10,000 IOs
11. T BNLJ S: 25,000 IOs
12. T SMJ S: 30,000 IOs

Query Optimization - Worksheet

How could we modify the query so that the R SMJ S produces
an interesting order?

Query Optimization - Worksheet

How could we modify the query so that the R SMJ S produces
an interesting order?

R SMJ S will be sorted on column b so we need b to be
interesting. We could add ORDER BY b, GROUP BY b, or
another join condition involving R.b or S.b to the query to
make it interesting.

Query Optimization - Worksheet

Will the query plan: T BNLJ (R SMJ S) be considered by the
final pass of the query optimizer?

Query Optimization - Worksheet

Will the query plan: T BNLJ (R SMJ S) be considered by the
final pass of the query optimizer?

No, this query plan is not left-deep (all join results must be on
the left side of their parent join), so it is not considered in the
final pass.

Attendance Link

https://cs186berkeley.net/attendance

https://cs186berkeley.net/attendance

