
Transactions &
Concurrency Control 2

R&G 16/17

There are three side effects of acid. Enhanced
long term memory, decreased short term
memory, and I forget the third.

- Timothy Leary

TWO PHASE LOCKING

Two Phase Locking (2PL)

• The most common scheme for enforcing conflict serializability
• A bit “pessimistic”

• Sets locks for fear of conflict… Some cost here.
• Alternative schemes use multiple versions of data and

“optimistically” let transactions move forward
• Abort when conflicts are detected.
• Some names to know/look up:

• Optimistic Concurrency Control
• Timestamp-Ordered Multiversion Concurrency Control

• We will not study these schemes in this lecture

Two Phase Locking (2PL), Part 2

• Rules:
• Xact must obtain a S (shared) lock before reading, and an X (exclusive)

lock before writing.
• Xact cannot get new locks after releasing any locks

S X

S √ –

X – –

Lock
Compatibility
Matrix

Two Phase Locking (2PL), Part 3

• 2PL guarantees conflict serializability (why?)
• But, does not prevent cascading aborts

time

locks held

release phaseacquisition
phase

Why 2PL guarantees conflict serializability
• When a committing transaction has reached the end of its acquisition phase…

• Call this the “lock point”
• At this point, it has everything it needs locked…
• … and any conflicting transactions either:

• started release phase before this point
• are blocked waiting for this transaction

• Visibility of actions of two conflicting transactions are ordered by their lock points
• The order of lock points gives us an equivalent serial schedule!

Strict Two Phase Locking (2PL)

• Problem: Cascading Aborts
• Example: rollback of T1 requires rollback of T2!

T1: R(A), W(A) Abort
T2: R(A), W(A)

Strict Two Phase Locking

• Same as 2PL, except all locks released together when transaction completes
• (i.e.) either

• Transaction has committed (all writes durable), OR
• Transaction has aborted (all writes have been undone)

Next ...

• A few examples

Non-2PL, A = 1000, B = 2000, Output = ?
T1 T2

Lock_X(A)

Read(A)

Lock_S(A)

A: = A-50

Write(A)

Unlock(A)

Read(A)

Unlock(A)

Lock_S(B)

Lock_X(B)

Read(B)

Unlock(B)

PRINT(A), PRINT(B), PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

Output: 950, 2000, 2950

Non-2PL, A = 1000, B = 2000, Output = ? cont
T1 T2

Lock_X(A)

Read(A): (A=1000)

Lock_S(A)

A: = A-50 (A=950)

Write(A) A=950

Unlock(A)

Read(A) (A = 950)

Unlock(A)

Lock_S(B)

Lock_X(B)

Read(B) (B=2000)

Unlock(B)

PRINT(A), PRINT(B), PRINT(A+B)

Read(B) (B=2000)

B := B +50 (B=2050)

Write(B) B=2050

Unlock(B)

Output: 950, 2000, 2950

2PL, A = 1000, B = 2000, Output = ?
T1 T2

Lock_X(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

Unlock(A)

Lock_S(A)

Read(A)

Read(B)

B := B +50

Write(B)

Unlock(B)

Lock_S(B)

Unlock(A)

Read(B)

Unlock(B)

PRINT(A), PRINT(B), PRINT(A+B)
Output: 950, 2050, 3000

Strict 2PL, A = 1000, B = 2000, Output = ?
T1 T2

Lock_X(A)

Read(A)

Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B)

Read(A)

Lock_S(B)

Read(B)

PRINT(A), PRINT(B), PRINT(A+B)

Unlock(A)

Unlock(B)
Output: 950, 2050, 3000

Which schedules does Strict 2PL allow?

Serializable

Avoid
Cascading
Aborts

Serial

View Serializable

Conflict Serializable

All Schedules

Architecture

Database

You are here

Database
Management

System

Query Parsing
& Optimization

SQL Client

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

Database
Management

System

Query Parsing
& Optimization

SQL Client

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

Database
Management

System

Query Parsing
& Optimization

SQL Client

Relational Operators

Files and Index Management

Buffer Management

Disk Space Management

Logging &
Recovery

Lock
Manager

How Do We Lock Data?

• Not by any crypto or hardware enforcement
• There are no adversaries here … this is all within the DBMS

• We lock by simple convention:
• Within DBMS internals, we observe a lock protocol
• If your transaction holds a lock, and my transaction requests a

conflicting lock, then I am queued up waiting for that lock.

Lock Management

• Lock and unlock requests handled by Lock Manager

• LM maintains a hashtable, keyed on names of objects being locked.

• LM keeps an entry for each currently held lock
• Entry contains

• Granted set: Set of xacts currently granted access to the lock
• Lock mode: Type of lock held (shared or exclusive)
• Wait Queue: Queue of lock requests

Granted Set Mode Wait Queue

A {T1, T2} S T3(X) 🡨 T4(X)

B {T6} X T5(X) 🡨 T7(S)

Lock Management (continued)

• When lock request arrives:
• Does any xact in Granted Set or Wait Queue want a conflicting lock?

• If no, put the requester into “granted set” and let them proceed
• If yes, put requester into wait queue (typically FIFO)

• Lock upgrade:
• Xact with shared lock can request to upgrade to exclusive

Granted Set Mode Wait Queue

A {T1, T2} S T2(X) 🡨 T3(X) 🡨 T4(X)

B {T6} X T5(X) 🡨 T7(S)

Example
Lock_X(A)

Lock_S(B)

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)
Final lock table state:

A:
X lock held by T1
wait queue = [T2 wants S]

B:
S lock held by T2
wait queue = [T1 wants X]

Uh-oh, T1 and T2 are waiting for each other!

DEADLOCK

Deadlocks, cont

• Deadlock: Cycle of Xacts waiting for locks to be released by each other.

• Three ways of dealing with deadlocks:
• Prevention
• Avoidance
• Detection and Resolution

• Many systems just punt and use timeouts
• What are the dangers with this approach?

Deadlock Scenarios

• They can just happen (unavoidable)

• Bad implementation of Lock Upgrade (avoidable! prioritize upgrades)

• Multiple Lock Upgrades (unavoidable)

Granted Set Mode Wait Queue

A {T1, T2} S T2(X) 🡨 T1(X) 🡨 T3(X) 🡨
T4(X)

Granted Set Mode Wait Queue

A {T1} S T2(X)

B {T2} X T1(S)

Granted Set Mode Wait Queue

A {T1, T2} S 🡨 T2(X) T3(X) 🡨 T4(X)

Deadlock Scenarios

• They can just happen (unavoidable)

• Bad implementation of Lock Upgrade (avoidable! prioritize upgrades)

• Multiple Lock Upgrades (unavoidable)

Granted Set Mode Wait Queue

A {T1, T2} S T2(X) 🡨 T1(X) 🡨 T3(X) 🡨
T4(X)

Granted Set Mode Wait Queue

A {T1} S T2(X)

B {T2} X T1(S)

Granted Set Mode Wait Queue

A {T1, T2} S 🡨 T2(X) T3(X) 🡨 T4(X)

Deadlock Prevention

• Common technique in operating systems

• Standard approach: resource ordering
• Screen < Network Card < Printer

• Why is this problematic for Xacts in a DBMS?
• What order would you impose?

Deadlock Avoidance

• Assign priorities based on age: (now – start_time).
• Say Ti wants a lock that Tj holds. Two possible policies:

• Wait-Die: If Ti has higher priority, Ti waits for Tj; else Ti aborts
• Wound-Wait: If Ti has higher priority, Tj aborts; else Ti waits

• Read each of these like a ternary operator (C/C++/java/javascript)

 Ti > Tj ?

 Ti > Tj ?
:

Wound Wait

:

Wait Die

Deadlock Avoidance: Analysis

• Q: Why do these schemes guarantee no deadlocks?
• Q: What do the previous images have in common?

• Important Detail: If a transaction re-starts, make sure it gets its original timestamp.
Why?

• Note: other priority schemes make sense
• E.g. measures of resource consumption, like #locks acquired

Deadlock Detection

• Create and maintain a “waits-for” graph
• Periodically check for cycles in a graph

Deadlock Detection, Part 2

Example:

T1:
T2:
T3:

T4:
T1 T2

T4 T3

Deadlock Detection, Part 3

Example:

T1: S(A)
T2:
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 4

Example:

T1: S(A) S(D)
T2:
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 5

Example:

T1: S(A) S(D)
T2: X(B)
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 6

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3:
T4:

T1 T2

T4 T3

Deadlock Detection, Part 7

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3: S(D)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 8

Example:

T1: S(A) S(D) S(B)
T2: X(B)
T3: S(D), S(C)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 9

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C)
T4:

T1 T2

T4 T3

Deadlock Detection, Part 10

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C)
T4: X(B)

T1 T2

T4 T3

Deadlock Detection, Part 11

Example:

T1: S(A) S(D) S(B)
T2: X(B) X(C)
T3: S(D) S(C) X(A)
T4: X(B)

T1 T2

T4 T3

Deadlock!

• T1, T2, T3 are involved in a deadlock
• Doing no good, and holding locks

• T4 is not involved in the deadlock
• In the background, run a deadlock detection algorithm

• Periodically extract the waits-for graph
• Find cycles
• “Shoot” a transaction on the cycle

• Empirical fact
• Most deadlock cycles are small (2-3 transactions)

LOCK GRANULARITY

Lock Granularity, cont

• Hard to decide what granularity to lock
• Tuples vs Pages vs Tables?

• What is the tradeoff?
• Fine-grained availability of resources would be nice (e.g. lock per tuple)
• Small # of locks to manage would also be nice (e.g. lock per table)
• Can’t have both!

• Or can we???

Multiple Locking Granularity

• Shouldn’t have to make same decision for all transactions!
• Allow data items to be of various sizes
• Define a hierarchy of data granularities, small nested within large

• Can be represented graphically as a tree.

Example of Granularity Hierarchy (RDBMS)

• Data “containers” can be viewed as nested.
• The levels, starting from the coarsest (top) level are

• Database, Tables, Pages, Records
• When a transaction locks a node in the tree explicitly, it implicitly locks all the node’s

descendants in the same mode.

contains
DB

T1 T2

Pa Pb
P

c

r
a1

r
a2

r
an

r
b1

r
bk r

c1
r

cm

Multiple Locking Granularity

• Granularity of locking (level in tree where locking is done):
• Fine granularity (lower in tree): High concurrency, lots of locks (overhead)
• Coarse granularity (higher in tree): Few locks (low overhead), lost concurrency

• Lost potential concurrency if you don’t need everything inside the coarse grain

DB

T1 T2

Pa Pb
P

c

r
a1

r
a2

r
an

r
b1

r
bk r

c1
r

cm

Real-World Locking Granularities
Resource Description

RID A row identifier used to lock a
single row within a heap.

KEY A row lock within an index used to
protect key ranges in serializable
transactions.

PAGE An 8-kilobyte (KB) page in a
database, such as data or index
pages.

EXTENT A contiguous group of eight
pages, such as data or index
pages.

HoBT A heap or B-tree. A lock protecting
a B-tree (index) or the heap data
pages in a table that does not
have a clustered index.

TABLE The entire table, including all data
and indexes.

FILE A database file.

APPLICATION An application-specified resource.

METADATA Metadata locks.

ALLOCATION_UNIT An allocation unit.

DATABASE The entire database.

From MS SQL Server
https://technet.microsoft.com/en-us/library/
jj856598(v=sql.110).aspx

Solution: New Lock Modes, Protocol

• Allow xacts to lock at each level, but with a special protocol using new “intent” locks:
• Before getting S or X lock, Xact must have proper intent locks on all its ancestors in the

granularity hierarchy.

DB

T1 T2

Pa Pb
P

c

r
a1

r
a2

r
an

r
b1

r
bk r

c1
r

cm

Intent-to-share (IS)

Intent-to-share (IS)

Share (S)

New Lock Modes – Intention Lock Modes

• 3 additional lock modes:
• IS: Intent to get S lock(s) at finer granularity.
• IX: Intent to get X lock(s) at finer granularity.
• SIX: Like S & IX at the same time. Why useful?

• Intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes

Page P Tuple t1

Tuple t2

Multiple Granularity Locking Protocol

• Each Xact starts from the root of the hierarchy.
• To get S or IS lock on a node, must hold IS or IX on parent node.

• What if Xact holds S on parent? SIX on parent?
• To get X or IX or SIX on a node, must hold IX or SIX on parent node.
• Must release locks in bottom-up order.

• 2-phase and lock compatibility matrix rules enforced as well
• Protocol is correct in that it is equivalent to directly setting locks at leaf levels of the hierarchy.

Tuples

Tables

Pages

Database

Lock Compatibility Matrix

• IS – Intent to get S lock(s) at finer granularity.
• IX – Intent to get X lock(s) at finer granularity.
• SIX mode: Like S & IX at the same time.

IS IX S SIX X

IS

IX

S true false

SIX

X false false

Page P Tuple t1

Tuple t2

ISS
IXX

Handy simple case to remember:
Could 2 intent locks be compatible?

Tuples

Tables

Pages

Database

Lock Compatibility Matrix, Cont

• IS – Intent to get S lock(s) at finer granularity.
• IX – Intent to get X lock(s) at finer granularity.
• SIX mode: Like S & IX at the same time.

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

Page P Tuple t1

Tuple t2

ISS
IXX

Handy simple case to remember:
Could 2 intent locks be compatible?

Tuples

Tables

Pages

Database

Real-World Lock Compatibility Matrix

From MS SQL Server
https://technet.microsoft.com/en-us/library/
jj856598(v=sql.110).aspx

For Your Information: Indexes

• 2PL on B+ tree pages is a rotten idea.
• Think about the first thing you would lock, and how that affects other xacts!

• Instead, do short locks (latches) in a clever way
• Idea: Upper levels of B+ tree just need to direct traffic correctly. Don’t need

serializability or 2PL!
• Different tricks to exploit this

• The B-link tree is elegant
• The Bw-tree is a recent variant for main memory DBs

• Note: this is pretty complicated!

For Your Information: Phantoms

• Suppose you query for sailors with rating between 10
and 20, using an Alternative 2 B+ tree

• You set tuple-level locks in the Heap File
• I insert “Dread Pirate Roberts”, with rating 12
• You do your query again via the index

• Yikes! A phantom
• Problem: Serializability assumed a static DB
• What we want: lock the logical range 10-20

• Hard to imagine that lock table! Doesn’t work well.
• What is done: set locks in indexes cleverly

• So-called “next key locking”

Summary, cont.

• Correctness criterion for isolation is “serializability”.
• In practice, we use “conflict serializability” which is conservative but easy to enforce

• Two Phase Locking and Strict 2PL: Locks implement the notions of conflict directly
• The lock manager keeps track of the locks issued.
• Deadlocks may arise; can either be prevented or detected.

• Multi-Granularity Locking:
• Allows flexible tradeoff between lock “scope” in DB, and # of lock entries in lock table

• More to the story
• Optimistic/Multi-version/Timestamp CC
• Index “latching”, phantoms
• Actually, there’s much much more :-)

