
Discussion 8
Transactions & Concurrency



Vitamin 8 (Transactions & Concurrency) due Monday, March 18 at 11:59pm

Project 3 Part 2 (Joins  & QO) due Wednesday, March 13 at 11:59pm

Mid-Semester Survey due Monday, March 11 at 11:59pm

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSdfqnS9pfUIRrf7enq_3rTgMp8gzvb-H6M96r6xLVNM_l750A/viewform?usp=sf_link


Agenda

I. Transactions
II. Serializability
III. Locking
IV. Multi-granularity Locking
V. Worksheet



Transactions



Transactions

● Collections of operations that are a single logical unit
○ e.g. swapping sections on CalCentral is a single logical operation, 

but consists of:
■ checking if the new section has space
■ removing student from old section
■ adding student to new section

○ We would like these components to all happen at once
■ don’t want another student to fill up new section after 

removing student from old section!



● We want transactions to obey ACID
○ atomicity: all operations in a transaction happen, or none of them
○ consistency: database consistency (unique constraints, etc) is 

maintained
○ isolation: should look like we only run 1 transaction at a time (even 

if we run multiple concurrently)
○ durability: once a transaction commits, it persists

● commit: indicates successful transaction (save changes)
● abort: indicates unsuccessful transaction (revert changes)

Transactions



● In the context of swapping sections on Calcentral....
○ atomicity: either drop and add, or no change - shouldn’t drop 

student from old section then not add into new section!
○ consistency: make sure constraints like “student only enrolled in 

one section” are maintained
○ isolation: should look like we’re not making other changes at the 

same time - for example, enrolling Amy into section after dropping 
Carl but before adding Carl to new section

○ durability: once we say that we’ve made the change, student 
should not suddenly find themselves in old section later on!

Transactions



Transactions

● For this week, we’ll focus on isolation. Durability and atomicity will be 
covered in the future  
○ isolation: should look like we only run 1 transaction at a time (even 

if we run multiple concurrently)



● There are benefits to running many transactions concurrently (at the 
same time)
○ throughput argument: can increase processor/disk utilization (e.g. 

work on another transaction while one is busy waiting for data 
from disk) → more transactions done per second

○ latency argument: if we run lots of transactions at once, a long 
running transaction doesn’t cause short transactions to wait a long 
time to start → transactions may get finished faster

● but we still want to maintain isolation!

Concurrency



Serializability



Serializability

● schedule: order in which we execute operations of a set of 
transactions

● serial schedule: every transaction runs start to finish without any 
interleaving

● We say two schedules are equivalent if:
○ They involve the same transactions
○ Each transaction has its operations in the same order
○ The final state after all the transactions is the same

● Having isolation basically means having a schedule that is equivalent 
to a serial schedule (serializable)



Serializability

● How do you check if a schedule is serializable?
○ You don’t - even checking if a schedule is view serializable 

(stronger condition than serializable - some serializable schedules 
are not view serializable) is NP-complete

● We instead check if schedules are conflict serializable
○ Much stronger condition than serializable - lots of serializable 

schedules are not conflict serializable
○ but usually good enough



Conflict Serializability

● Two operations in a schedule conflict if:
○ at least one operation is a write
○ they are on different transactions
○ they work on the same resource

● Conflicts are essentially pairs of operations that we need to be careful 
about

T1 R(A) R(B) R(A)

T2 R(B) W(B)



Conflict Serializability

● Two operations in a schedule conflict if:
○ at least one operation is a write
○ they are on different transactions
○ they work on the same resource

● Conflicts are essentially pairs of operations that we need to be careful 
about

stale read: T1 uses old value of B - if reversed order, output may differ

T1 R(A) R(B) R(A)

T2 R(B) W(B)



● Two schedules are conflict equivalent (and therefore equivalent)           
if every conflict is ordered the same way
○ two reads are not a conflict, so they can be ordered in any way
○ two operations in the same transaction do not conflict, because the 

order is fixed anyways
○ two operations on different resources are not a conflict, and can 

happen in any order
● A schedule is conflict serializable if it is conflict equivalent to a serial 

schedule

Conflict Serializability



Conflict Serializability

● How do we check for conflict equivalence/serializability?
○ We build a dependency graph (precedence graph)

■ One node per transaction
■ If an operation in Ti conflicts with an operation in Tj, and the 

operation in Ti comes first, add an edge from Ti to Tj

T1 R(A) R(B) R(A)

T2 R(B) W(B)

T1 T2



Conflict Serializability
● To find equivalent schedules, do a topological sort of the graphs!

○ If all the arrows are in the same direction, the two schedules are 
conflict equivalent
■ A serial schedule’s graph looks like:

■ No cycles in a serial schedule’s dependency graph
■ Theorem: all conflict serializable schedules have an acyclic 

dependency graph
● We can just check if graph has a cycle!

T1 T2 T3 T4 T6T5



View Serializability

● Conflict serializable cares about the order of blind writes
○ intermediate writes that are overwritten without an interleaving 

read
○ order of blind writes doesn’t actually matter for serializability

● Two schedules are view equivalent if they are conflict equivalent, 
except for potentially reordering blind writes

● A schedule is view serializable if it is view equivalent to a serial 
schedule

● NP-complete to check…
○ Also doesn’t cover all serializable schedules!



View Serializability

● How do we check for view equivalence/serializability?
○ Same initial reads

■ Transaction reads in the same initial value for X in both schedules

○ Same dependent reads
■ If transaction reads in a value X written by another transaction in one schedule, it also 

reads value of X written by same transaction in view equivalent schedule.

○ Same winning writes
■ Same transaction writes the final value of X in both schedules

T1 R(A) W(A)

T2 W(A)

T3 W(A)

T1 R(A) W(A)

T2 W(A)

T3 W(A)

Schedule 1 Schedule 2



View Serializability

● Blind Writes: writes with no reads in between
○ Shown in the sequence of three writes in both schedules

● How do we check for view equivalence/serializability?
○ Same initial reads
○ Same dependent reads
○ Same winning writes

T1 R(A) W(A)

T2 W(A)

T3 W(A)

T1 R(A) W(A)

T2 W(A)

T3 W(A)

Schedule 1 Schedule 2



View Serializability

● How do we check for view equivalence/serializability?
○ Same initial reads

■ Transaction reads in the same initial value for X in both schedules

○ Same dependent reads
■ If transaction reads in a value X written by another transaction in one schedule, it also 

reads value of X written by same transaction in view equivalent schedule.

○ Same winning writes
■ Same transaction writes the final value of X in both schedules

T1 R(A) W(A)

T2 W(A)

T3 W(A)

T1 R(A) W(A)

T2 W(A)

T3 W(A)

Schedule 1 Schedule 2



View Serializability

● How do we check for view equivalence/serializability?
○ Same initial reads

■ Transaction reads in the same initial value for X in both schedules

○ Same dependent reads
■ If transaction reads in a value X written by another transaction in one schedule, it also 

reads value of X written by same transaction in view equivalent schedule.

○ Same winning writes
■ Same transaction writes the final value of X in both schedules

T1 R(A) W(A)

T2 W(A)

T3 W(A)

T1 R(A) W(A)

T2 W(A)

T3 W(A)

Schedule 1 Schedule 2



Types of Serializability

All Schedules

Serial

View Serializable

Conflict Serializable

Serializable



Phantom Problem

- Phantom problem: occurs within a single transaction when the same query 
produces different sets of rows at different times

- example: T1 executes SELECT twice, but returns a row the second 
time that was not returned the first time because T2 inserts a new 
value between the two SELECT statements → “phantom” row

- these types of schedules are not serializable



Serializability Summary

● Serial: schedule occurs in isolation (as if it’s the only one running) 
● Serializable: schedule appears to occur as if in isolation (looks equivalent to a 

serial schedule) 
● Conflict Serializable: All conflicting operations are ordered in the same way as 

that of a serial schedule  
○ What we focus on in this course! 
○ Conflict serializability implies serializability 

● View Serializable: All conflicts are conflict equivalent ( just like conflict 
serializable) to a serial schedule but blind writes may appear in any order



Question 1
Conflict Serializability



Conflict Serializability

(a) Draw the dependency graph (precedence graph) for the schedule.

T1 R(A) W(A) R(B)

T2 W(B) R(C) W(C) W(A)

T3 R(C) W(D)



Conflict Serializability

(a) Draw the dependency graph (precedence graph) for the schedule.

T1 R(A) W(A) R(B)

T2 W(B) R(C) W(C) W(A)

T3 R(C) W(D)



Conflict Serializability

(b) Is this schedule conflict serializable? If so, what are all the conflict 
equivalent serial schedules? If not, why not?

T1 R(A) W(A) R(B)

T2 W(B) R(C) W(C) W(A)

T3 R(C) W(D)



Conflict Serializability

(b) Is this schedule conflict serializable? If so, what are all the conflict 
equivalent serial schedules? If not, why not?

Conflict equivalent to T3 , T1 , T2 and T1 , T3 , T2 
(possible topological sorts of the dependency graph).

T1 R(A) W(A) R(B)

T2 W(B) R(C) W(C) W(A)

T3 R(C) W(D)



Conflict Serializability

(c) Draw the dependency graph (precedence graph) for the schedule.

T1 R(A) R(B) W(A)

T2 R(A) R(B) W(B)

T3 R(A)

T4 R(B)



Conflict Serializability

(c) Draw the dependency graph (precedence graph) for the schedule.

T1 R(A) R(B) W(A)

T2 R(A) R(B) W(B)

T3 R(A)

T4 R(B)



Conflict Serializability

(d) Is this schedule conflict serializable? If so, what are all the conflict 
equivalent serial schedules? If not, why not?

T1 R(A) R(B) W(A)

T2 R(A) R(B) W(B)

T3 R(A)

T4 R(B)



Conflict Serializability

(d) Is this schedule conflict serializable? If so, what are all the conflict 
equivalent serial schedules? If not, why not?

No, there’s a cycle between T1 and T2 in the dependency graph.

T1 R(A) R(B) W(A)

T2 R(A) R(B) W(B)

T3 R(A)

T4 R(B)



Locking



Simple Locking

● Database operations tend to include more reads than writes, so we use 
readers-writers locks

● A transaction may lock a resource in one of two ways: Shared or 
eXclusive, corresponding to reading and writing
○ An S lock lets a transaction read a resource (e.g. tuple)

■ Many transactions can hold S locks on a resource at once
○ An X lock lets a transaction modify a resource

■ No other transaction can have any type of lock while a 
transaction has an X lock

● If a transaction can’t get a lock it wants, it blocks, and waits until 
another transaction releases the conflicting lock



Simple Locking

● The lock compatibility matrix tells us whether multiple transactions can 
acquire locks on the same resource at the same time
○ Consider (S,X) = false. This means that it is not possible for T1 to 

hold an S lock on a resource while T2 holds an X lock on the same 
resource.

NL (no lock held) S X

NL (no lock held) ✔ ✔ ✔

S ✔ ✔ ❌
X ✔ ❌ ❌



Deadlocks

● What if T1 is waiting for T2 to release a lock, but T2 is also waiting for T1 
to release a lock?
○ This is called a deadlock - when a bunch of transactions are waiting 

on each other in a cycle
● If T1 is waiting for T2 to release a lock, T1 cannot do any more 

operations or acquire more locks while it is waiting
● We can either avoid them in the first place (deadlock avoidance) or 

catch them (deadlock detection) and abort a transaction in the 
deadlock



Deadlock Avoidance

● Two approaches
○ wait-die: if transaction Ti wants a lock but Tj holds a conflicting lock

■ if Ti is higher priority, it waits for Tj to release conflicting lock
■ if Ti is lower priority, it aborts (“die”)
■ transactions can only wait on lower priority transactions → cannot 

have deadlock (lowest priority transactions cannot wait)
○ wound-wait: if transaction Ti wants a lock but Tj holds a conflicting lock

■ if Ti is higher priority, it causes Tj to abort (“wound”)
■ if Ti is lower priority, it waits for Tj to finish
■ transactions can only wait on higher priority transactions → cannot 

have deadlock (highest priority transactions cannot wait)



● Unless priority is explicitly defined, assign a transaction’s priority by 
age: now - start time 

● While T1 waits for T2 to release a lock, T1 cannot do any more operations 
or acquire other locks

Deadlock Avoidance



Deadlock Detection

● We draw out a “waits-for” graph
○ One node for each transaction
○ If Ti holds a lock that conflicts with the lock that Tj wants                   

(or Tj “waits for” Ti), we add an edge from Tj to Ti 

○ A cycle indicates a deadlock (between the transactions in the cycle) 
- we can abort one to end the deadlock

● Alternative approach (used in some real databases): just kill transactions 
if they aren’t doing anything for a while

Tj Ti



Question 2
Deadlocks



Deadlocks

(a) Draw a “waits-for” graph and state whether or not there is a deadlock.

T1 S(A) S(D) S(B)

T2 X(B) X(C)

T3 S(D) S(C) X(A)

T4 X(B)



Deadlocks

(a) Draw a “waits-for” graph and state whether or not there is a deadlock.

Deadlock between T1 , T2 , T3 .

T1 S(A) S(D) S(B)

T2 X(B) X(C)

T3 S(D) S(C) X(A)

T4 X(B)



Deadlocks

(b) If we try to avoid deadlock by using wait-die deadlock avoidance policy, 
would any transactions be aborted? Assume T1 priority > T2 > T3 > T4.

T1 S(A) S(D) S(B)

T2 X(B) X(C)

T3 S(D) S(C) X(A)

T4 X(B)



Deadlocks

(b) If we try to avoid deadlock by using wait-die deadlock avoidance policy, 
would any transactions be aborted? Assume T1 priority > T2 > T3 > T4.
Yes, T3 and T4 are aborted. When T4 attempts to acquire a lock on B, 
which is held by T2, T4 will abort since it is attempting to acquire a lock 
held by a transaction with higher priority. The same thing happens when T3 
attempts to acquire a lock on A, which is held by T1.

T1 S(A) S(D) S(B)

T2 X(B) X(C)

T3 S(D) S(C) X(A)

T4 X(B)



Locking (2PL and Strict 2PL)



2-Phase Locking (2PL)

● One way to enforce conflict serializability
● In 2-phase locking,

○ a transaction may not acquire a lock after it has released any lock
○ two “phases”

■ from start to until a lock is released, the transaction is only 
acquiring locks

■ then until the end of the transaction, it is only releasing locks

time

# locks held

release phaseacquisition 
phase



Cascading Aborts
● Consider the following (+ for acquire, - for release):

● T1 aborting means all of the transactions have to be rolled back
○ Even though T4 and T5 didn’t read A at all
○ This is a cascading abort

T1 +X(A) -X(A) abort!

T2 +S(A)

T3 +S(A) +X(B) -X(B)

T4 +S(B)

T5 +S(B)



Strict 2-Phase Locking (Strict 2PL)
● The problem is that 2PL lets another transaction read new values 

before the transaction commits (since locks can be released long 
before commit)

● Strict 2PL avoids cascading aborts
○ Same as 2PL, except only allow releasing locks at end of 

transaction

# locks held

time

release all locks at 
end of xact



Strict 2PL and Cascading Aborts

● The previous schedule would have been illegal under Strict 2PL 
○ T1 would not release its lock on A until it commits
○ Other transactions would not have seen A and would not have to 

be rolled back

T1 +X(A) -X(A) abort!

T2 +S(A)

T3 +S(A) +X(B) -X(B)

T4 +S(B)

T5 +S(B)



Question 3
Locking



Locking

(a) What is printed, assuming we 
initially have B = 3 and F = 300?

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(a) What is printed, assuming we 
initially have B = 3 and F = 300?

3030

T1: Lock X(B) → Read B → B = 3*10 = 30 → Write B →  
Lock X(F) → Unlock B

T2: Lock S(F) (waiting for T1 to release X Lock on F)

T1: F = 30*100 = 3000 → Write F → Commit → Unlock 
F (S Lock on F is granted to T2)

T2: Read F → Unlock F → Lock S(B) → Read B → 
Compute and print F + B = 3000 + 30 = 3030 → 
Commit → Unlock B

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(b) Does the execution use 2PL, strict 
2PL, or neither?

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(b) Does the execution use 2PL, strict 
2PL, or neither?

Neither - S(F) unlocked before 
T2 acquires S(B)

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(c) Would moving Unlock F in T2 to 
any point after Lock S(B) change this 
(or keep it) in 2PL?

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(c) Would moving Unlock F in T2 to 
any point after Lock S(B) change this 
(or keep it) in 2PL?

Yes - all locks would be 
acquired (for T2) before any are 
released.

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(d) Would moving Unlock F in T1 and 
Unlock F in T2 to the end of their 
respective transactions change this 
(or keep it) in strict 2PL?

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(d) Would moving Unlock F in T1 and 
Unlock F in T2 to the end of their 
respective transactions change this 
(or keep it) in strict 2PL?

No - T1 still unlocks B before the 
end of the transaction

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(e) Would moving Unlock B in T1 and 
Unlock F in T2 to the end of their 
respective transactions change this 
(or keep it) in strict 2PL?

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Locking

(e) Would moving Unlock B in T1 and 
Unlock F in T2 to the end of their 
respective transactions change this 
(or keep it) in strict 2PL?

Yes - all unlocks would only 
happen when the respective 
transactions end

T1 T2
Lock X(B)

Read B

B := B * 10

Write B

Lock X(F)

Unlock B

Lock S(F)

F := B * 100

Write F

Commit

Unlock F

Read F

Unlock F

Lock S(B)

Read B

Print F+B

Commit

Unlock B



Multi-granularity Locking



Multi-granularity Locking

● What are the granularity of our locks?
○ Tuple-level: one lock per tuple, but then a scan might lock millions 

of locks → high locking overhead
○ Table-level: one lock per table, but then any update locks the entire 

table → low concurrency
● Multi-granularity locking: instead of picking one, allow for locking at 

different levels of granularity (e.g. database, table, page, tuple)
○ scans can acquire a lock for entire table → low overhead
○ updating tuple can acquire a lock for tuple only → high concurrency



Multi-granularity Locking

● If a transaction has X on a tuple, it shouldn’t be possible to get S on the 
entire table
○ checking locks on all tuples → high locking overhead again

● For each lock, require that transactions hold appropriate intent locks at 
all higher levels of granularity
○ need an intent lock on database, table, page to hold S/X lock on 

tuple
○ intent lock tells us about any potential locking at a lower level



Multi-granularity Locking

● Two new lock types:
○ IS = Intent to acquire Shared lock at a lower level
○ IX = Intent to acquire eXclusive lock at a lower level

● Require that a transaction has IS to acquire S, IX to acquire X
○ To get S(tuple), need: IS(database), IS(table), IS(page)

■ IX lets you acquire S/IS locks too
○ If a transaction tries to get S(table), and sees another transaction 

has IX(table) → another transaction has X lock on a tuple, so we 
can’t get S(table) yet



Multi-granularity Locking



Multi-granularity Locking

● What if we want to scan table AND update a page?
○ X on entire table → low concurrency
○ IX on table, S/X locks on every page → high locking overhead

● One more lock type:
○ SIX = Shared + Intent to acquire eXclusive lock at a lower level

■ Basically equivalent to having both S and IX locks – can read 
entire table, can also acquire X locks



Multi-granularity Locking



Multi-granularity Locking

● Our new compatibility matrix



Multi-granularity Locking

● Parent → Children Lock Relationships for a Single Transaction

Parent Lock Possible Children Locks

NL Nothing

S Nothing

X Nothing

IS IS, S

IX IX, X, IS, S, SIX

SIX IX, X



Question 4
Multi-granularity Locking



Multi-granularity Locking

(a) Suppose a transaction T1 wants to scan a table R and update a few of its tuples. 
What kinds of locks should T1 have on R, the pages of R, and the updated tuples?



Multi-granularity Locking

(a) Suppose a transaction T1 wants to scan a table R and update a few of its tuples. 
What kinds of locks should T1 have on R, the pages of R, and the updated tuples?

SIX on R

IX on page (no need for SIX since already have S on R)

X on tuples being modified



Multi-granularity Locking

(b) Is an S lock compatible with an IX lock?



Multi-granularity Locking

(b) Is an S lock compatible with an IX lock?

Suppose T1 wants S(A) and T2 wants IX(A).

S(A) implies T1 will read all of A.

IX(A) implies T2 will write to some of A.

We can’t have T1 read all of A while T2 is writing to some of it, so S and IX are 
incompatible.



Multi-granularity Locking

(c) Consider a table which contains two pages with three tuples each, with Page 1 
containing Tuples 1, 2, and 3, and Page 2 containing Tuples 4, 5, and 6.

Given that a transaction T1 has IX(table), IX(Page 1), X(Tuple 1), which locks can be 
granted to a second transaction T2 on Tuple 2?

Page 2
Lock:

Table
Lock: IX

Page 1
Lock: IX

Tuple 2
Lock: ?

Tuple 1
Lock: X

Tuple 3
Lock: 

Tuple 5
Lock: 

Tuple 4
Lock: 

Tuple 6
Lock: 

T1: Red

T2: Blue



Multi-granularity Locking

(c) Consider a table which contains two pages with three tuples each, with Page 1 
containing Tuples 1, 2, and 3, and Page 2 containing Tuples 4, 5, and 6.

Given that a transaction T1 has IX(table), IX(Page 1), X(Tuple 1), which locks can be 
granted to a second transaction T2 on Tuple 2?

X, S



Multi-granularity Locking

(c) Consider a table which contains two pages with three tuples each, with Page 1 
containing Tuples 1, 2, and 3, and Page 2 containing Tuples 4, 5, and 6.

Given that a transaction T1 has IS(table), S(Page 1), which locks can be granted to a 
second transaction T2 on Page 1?

Page 2
Lock:

Table
Lock: IS

Page 1
Lock: S, ?

Tuple 2
Lock:

Tuple 1
Lock:

Tuple 3
Lock: 

Tuple 5
Lock: 

Tuple 4
Lock: 

Tuple 6
Lock: 

T1: Red

T2: Blue



Multi-granularity Locking

(c) Consider a table which contains two pages with three tuples each, with Page 1 
containing Tuples 1, 2, and 3, and Page 2 containing Tuples 4, 5, and 6.

Given that a transaction T1 has IS(table), S(Page 1), which locks can be granted to a 
second transaction T2 on Page 1?

S, IS
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