CS 188 Spring 2024

Projects / Project0

Project 0: Python, Setup, & Autograder Tutorial
Due: Friday, January 19, 11:59 PM PT.

TABLE OF CONTENTS
e Introduction

« Python Installation
« Dependencies installation

« Troubleshooting
« Workflow/ Setup Examples
« Python Basics
« Autograding
« Q1: Addition
» Q2: buyLotsOfFruit function
« Q3: shopSmart function

« Submission

Introduction

Projects in this class use Python 3.
Project O will cover the following:

 Instructions on how to set up Python,
« Workflow examples,
* A mini-Python tutorial,

« Project grading: Every project’s release includes its autograder that you can run locally to debug.
When you submit, the same autograder is ran.

Files to Edit and Submit: You will fill in portions of addition.py, buyLotsOfFruit.py, and
shopSmart.py in tutorial.zip during the assignment. Once you have completed the assignment, you
will submit these files to Gradescope (for instance, you can upload all .py files in the folder). Please

do not change the other files in this distribution.

Evaluation: Your code will be autograded for technical correctness. Please do not change the names
of any provided functions or classes within the code, or you will wreak havoc on the autograder.
However, the correctness of your implementation — not the autograder’s judgements — will be the
final judge of your score. If necessary, we will review and grade assignments individually to ensure

that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class for
logical redundancy. If you copy someone else’s code and submit it with minor changes, we will
know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to submit
your own work only; please don't let us down. If you do, we will pursue the strongest consequences

available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use them.
If you can’t make our office hours, let us know and we will schedule more. We want these projects to
be rewarding and instructional, not frustrating and demoralizing. But, we don’t know when or how

to help unless you ask.

Discussion: Please be careful not to post spoilers.

Python Installation

You need a Python (3.9 - 3.11) distribution and either Pip or Conda. Many of you will already have
Python installed from CS 61A (so just missing Pip), or Anaconda from EECS 16A.

To check if you meet our requirements, you should open the terminal run python -v and see that
the version is high enough. Then, run pip -V and conda -V and see that at least one of these works
and prints out some version of the tool. On some systems that also have Python 2 you may have to

use python3 and pip3 instead of the aforementioned.

If you need to install things, we recommend Python 3.9 and Pip for simplicity. If you already have
Python, you just need to install Pip.

On Windows either Windows Python or WSL2 can be used. WSL2 is really nice and provides a full
Linux environment, but takes up more space; Linux/ MacOS (both Unix) is used much more often for

computer science than Windows because it is more convenient and development tools are also

more reliable. It doesn't make a difference for this class but is a good tool to learn to use if you are

interested and have the time.

If you choose to use Conda via Anaconda or Miniconda, these already come with Python and Pip so

you would install just the one thing.

1 Install Python:
« For Windows and MacOS, we recommend using an official graphical installer: download and
install Python 3.9.
« For Linux, use a package manager to install Python 3.9.

2 Install Pip:

« For Windows and MacOS, run python -m ensurepip --upgrade.

« For Linux, use a package manager to install Pip for Python 3.

Dependencies installation
First, go through the Autograding section to understand how to work with tutorial.zip and the

autograder.py inside.

The machine learning project has additional dependencies. It's important to install them now so that
if there is an issue with the Python installation, we don't have to come back or redo the installation

later.

On Conda installations, the dependencies should already be there. You can test by confirming that
this command produces the below window pop up where a line segment spins in a circle.

python autograder.py --check-dependencies

The libararies needed and the corresponding commands are:

« numpy, which provides support for fast, large multi-dimensional arrays.

« matplotlib, a 2D plotting library.

pip install numpy
pip install matplotlib

After these, use the python autograder.py --check-dependencies command to confirm that
everything works.
TROUBLESHOOTING

Some installations will have python3 and pip3 refer to what we want to use. Also, there may by
multiple installations of python that may complicate which commands install where.

python -V # version of python

pip -V # version of pip, and which python it 1is 1installing to

which python # where python 1is

If there is a tkinter import error, it's likely because Python is atypical, and from Homebrew.
Uninstall that and install python from Homebrew with tkinter support, or use the recommended

graphical installer.

Workflow/ Setup Examples

You are not expected to use a particular code editor or anything, but here are some suggestions on

convenient workflows (you can skim both for half a minute and choose the one that looks better to

you):

« GUI and IDE, with VS Code shortcuts. You are highly encouraged to read the Using an IDE section
if using an IDE to learn convenient features.

+ In terminal, using Unix commans and Emacs (this is fine to do on Windows too). Useful to be
able to edit code on any machine without setup, and remote connecting setups such as using

the instructional machines.

Python Basics

If you're new to Python or need a refresher, we recommend going through the Python basics

tutorial.

Autograding

To get you familiarized with the autograder, we will ask you to code, test, and submit your code after

solving the three questions.

You can download all of the files associated the autograder tutorial as a zip archive: tutorial.zip (note
this is different from the zip file used in the UNIX and Python mini-tutorials, python_basics.zip).

Unzip this file and examine its contents:

[cs188-ta@nova ~]$ unzip tutorial.zip
[cs188-ta@nova ~]$ cd tutorial
[cs188-ta@nova ~/tutoriall$ 1s
addition.py

autograder.py
buyLotsOfFruit.py
grading.py
projectParams.py
shop.py
shopSmart. py
testClasses.py
testParser.py
test_cases

tutorialTestClasses.py

This contains a number of files you'll edit or run:

« addition.py: source file for question 1

s buyLotsOfFruit.py: source file for question 2
« shop.py: source file for question 3

* shopSmart.py : source file for question 3

* autograder.py : autograding script (see below)
and others you can ignore:

* test_cases: directory contains the test cases for each question
e grading.py: autograder code

* testClasses.py: autograder code

* tutorialTestClasses.py: test classes for this particular project

* projectParams.py: project parameters

The command python autograder.py grades your solution to all three problems. If we run it before

editing any files we get a page or two of output:
Click to see full output of python autograder.py

For each of the three questions, this shows the results of that question’s tests, the questions grade,
and a final summary at the end. Because you haven't yet solved the questions, all the tests fail. As
you solve each question you may find some tests pass while other fail. When all tests pass for a

question, you get full marks.

Looking at the results for question 1, you can see that it has failed three tests with the error message

"add(a, b) must return the sum of a and b". The answer your code gives is always 0, but the correct

answer is different. We'll fix that in the next tab.

Q1: Addition

Open addition.py and look at the definition of add:

def add(a, b):
"Return the sum of a and b"
"*** YOUR CODE HERE ***"

return ©

The tests called this with a and b set to different values, but the code always returned zero. Modify

this definition to read:

def add(a, b):
"Return the sum of a and b"
print("Passed a = %s and b = %s, returning a + b = %s" % (a, b, a + b))

return a + b
Now rerun the autograder (omitting the results for questions 2 and 3):

[cs188-ta@nova ~/tutorial]$ python autograder.py -q qil
Starting on 1-22 at 23:12:08

Question qi

*** PASS: test_cases/ql/additionl.test
s add(a,b) returns the sum of a and b
*** PASS: test _cases/ql/addition2.test
Rk add(a,b) returns the sum of a and b
*** PASS: test_cases/ql/addition3.test

S add(a,b) returns the sum of a and b

Question ql: 1/1

Finished at 23:12:08

Provisional grades

Total: 1/1

You now pass all tests, getting full marks for question 1. Notice the new lines "Passed a=..." which
appear before "*** PASS: ...". These are produced by the print statement in add. You can use print

statements like that to output information useful for debugging.

Q2: buyLotsOfFruit function

Implement the buyLotsOfFruit(orderList) function in buyLotsOfFruit.py which takes a list of
(fruit,numPounds) tuples and returns the cost of your list. If there is some fruit in the list which
doesn’t appear in fruitPrices it should print an error message and return None. Please do not
change the fruitPrices variable.

Run python autograder.py until question 2 passes all tests and you get full marks. Each test will
confirm that buyLotsOfFruit(orderList) returns the correct answer given various possible inputs.
For example, test_cases/q2/food_pricel.test tests whether:

Cost of [('apples', 2.0), ('pears', 3.0), ('limes', 4.0)] is 12.25

Q3: shopSmart function

Fill in the function shopSmart(orderList,fruitShops) in shopSmart.py, which takes an orderList (like
the kind passed in to FruitShop.getPrice0fOrder) and a list of FruitShop and returns the
FruitShop where your order costs the least amount in total. Don’t change the file name or variable
names, please. Note that we will provide the shop.py implementation as a “support” file, so you
don't need to submit yours.

Run python autograder.py until question 3 passes all tests and you get full marks. Each test will
confirm that shopSmart(orderList,fruitShops) returns the correct answer given various possible
inputs. For example, with the following variable definitions:

ordersil

[('apples', 1.0), ('oranges', 3.0)]
orders2 = [('apples', 3.0)]

dirl = {'apples': 2.0, 'oranges': 1.0}

shopl = shop.FruitShop('shopl',dirl)

dir2 = {'apples': 1.0, 'oranges': 5.0}

shop2 = shop.FruitShop('shop2', dir2)

shops = [shopl, shop2]

test_cases/q3/select_shopl.test tests whether: shopSmart.shopSmart(ordersl, shops) == shopl

and test_cases/q3/select_shop2.test tests whether: shopSmart.shopSmart(orders2, shops) ==

shop2

Submission

In order to submit your project upload the Python files you edited. For instance, use Gradescope'’s

upload on all .py files in the project folder.

