
CS 188 Introduction to Artificial Intelligence
Spring 2024 Note 18

Author (all other notes): Nikhil Sharma

Author (Bayes’ Nets notes): Josh Hug and Jacky Liang, edited by Regina Wang

Author (Logic notes): Henry Zhu, edited by Peyrin Kao

Credit (Machine Learning and Logic notes): Some sections adapted from the textbook Artificial Intelligence:
A Modern Approach.

Last updated: August 26, 2023

Value Iteration
Now that we have a framework to test for optimality of the values of states in a MDP, the natural follow-up
question to ask is how to actually compute these optimal values. To answer this question, we need time-
limited values (the natural result of enforcing finite horizons). The time-limited value for a state s with a
time-limit of k timesteps is denoted Uk(s), and represents the maximum expected utility attainable from s
given that the Markov decision process under consideration terminates in k timesteps. Equivalently, this is
what a depth-k expectimax run on the search tree for a MDP returns.

Value iteration is a dynamic programming algorithm that uses an iteratively longer time limit to compute
time-limited values until convergence (that is, until the U values are the same for each state as they were in
the past iteration: ∀s,Uk+1(s) =Uk(s)). It operates as follows:

1. ∀s ∈ S, initialize U0(s) = 0. This should be intuitive, since setting a time limit of 0 timesteps means
no actions can be taken before termination, and so no rewards can be acquired.

2. Repeat the following update rule until convergence:

∀s ∈ S, Uk+1(s)←max
a ∑

s′
T (s,a,s′)[R(s,a,s′)+ γUk(s′)]

At iteration k of value iteration, we use the time-limited values for with limit k for each state to gener-
ate the time-limited values with limit (k+1). In essence, we use computed solutions to subproblems
(all the Uk(s)) to iteratively build up solutions to larger subproblems (all the Uk+1(s)); this is what
makes value iteration a dynamic programming algorithm.

Note that though the Bellman equation looks essentially identical in construction to the update rule above,
they are not the same. The Bellman equation gives a condition for optimality, while the update rule gives a
method to iteratively update values until convergence. When convergence is reached, the Bellman equation
will hold for every state: ∀s ∈ S, Uk(s) =Uk+1(s) =U∗(s).

For conciseness, we frequently denote Uk+1(s)←maxa ∑s′ T (s,a,s′)[R(s,a,s′)+γUk(s′)] with the shorthand
Uk+1← BUk, where B is called the Bellman operator. The Bellman operator is a contraction by γ . To prove
this, we will need the following general inequality:

CS 188, Spring 2024, Note 18 1

|maxz f (z)−maxzh(z)| ≤ maxz| f (z)−h(z)|.

Now consider two value functions evaluated at the same state U(s) and U ′(s). We show that the Bellman
update B is a contraction by γ ∈ (0,1) with respect to the max norm as follows

|BU(s)−BU ′(s)|

=

∣∣∣∣∣
(

max
a ∑

s′
T (s,a,s′)[R(s,a,s′)+ γU(s′)]

)
−

(
max

a ∑
s′

T (s,a,s′)[R(s,a,s′)+ γU ′(s′)]

)∣∣∣∣∣
≤max

a

∣∣∣∣∣∑s′ T (s,a,s′)[R(s,a,s′)+ γU(s′)]−∑
s′

T (s,a,s′)[R(s,a,s′)+ γU ′(s′)]

∣∣∣∣∣
= max

a

∣∣∣∣∣γ ∑
s′

T (s,a,s′)U(s′)− γ ∑
s′

T (s,a,s′)U ′(s′)

∣∣∣∣∣
= γ max

a

∣∣∣∣∣∑s′ T (s,a,s′)(U(s′)−U ′(s′))

∣∣∣∣∣
≤ γ max

a

∣∣∣∣∣∑s′ T (s,a,s′)max
s′

∣∣U(s′)−U ′(s′)
∣∣∣∣∣∣∣

= γ max
s′

∣∣U(s′)−U ′(s′)
∣∣

= γ||U(s′)−U ′(s′)||∞,

where the first inequality follows from the general inequality introduced above, the second inequality follows
from taking the maximum of the differences between U and U ′ and finally in the second to last step we use
the fact that probabilities sum to 1 no matter the choice of a. The last step uses the definition of the max
norm for a vector x = (x1, . . . ,xn) which is ||x||∞ = max(|x1|, . . . , |xn|).
Because we just proved that value iteration via bellman updates are a contraction in γ , we know that value
iteration converges, and convergence happens when we have reached a fixed point which satisfies U∗=BU∗.

Let’s see a few updates of value iteration in practice by revisiting our racecar MDP from earlier, introducing
a discount factor of γ = 0.5:

CS 188, Spring 2024, Note 18 2

We begin value iteration by initialization of all U0(s) = 0:

cool warm overheated
U0 0 0 0

In our first round of updates, we can compute ∀s ∈ S, U1(s) as follows:

U1(cool) = max{1 · [1+0.5 ·0], 0.5 · [2+0.5 ·0]+0.5 · [2+0.5 ·0]}
= max{1,2}
= 2

U1(warm) = max{0.5 · [1+0.5 ·0]+0.5 · [1+0.5 ·0], 1 · [−10+0.5 ·0]}
= max{1,−10}
= 1

U1(overheated) = max{}
= 0

cool warm overheated
U0 0 0 0
U1 2 1 0

Similarly, we can repeat the procedure to compute a second round of updates with our newfound values for
U1(s) to compute U2(s).

U2(cool) = max{1 · [1+0.5 ·2], 0.5 · [2+0.5 ·2]+0.5 · [2+0.5 ·1]}
= max{2,2.75}
= 2.75

U2(warm) = max{0.5 · [1+0.5 ·2]+0.5 · [1+0.5 ·1], 1 · [−10+0.5 ·0]}
= max{1.75,−10}
= 1.75

U2(overheated) = max{}
= 0

cool warm overheated
U0 0 0 0
U1 2 1 0
U2 2.75 1.75 0

It’s worthwhile to observe that U∗(s) for any terminal state must be 0, since no actions can ever be taken
from any terminal state to reap any rewards.

Policy Extraction
Recall that our ultimate goal in solving a MDP is to determine an optimal policy. This can be done once
all optimal values for states are determined using a method called policy extraction. The intuition behind
policy extraction is very simple: if you’re in a state s, you should take the action a which yields the maximum

CS 188, Spring 2024, Note 18 3

expected utility. Not surprisingly, a is the action which takes us to the Q-state with maximum Q-value,
allowing for a formal definition of the optimal policy:

∀s ∈ S, π
∗(s) = argmax

a
Q∗(s,a) = argmax

a
∑
s′

T (s,a,s′)[R(s,a,s′)+ γU∗(s′)]

It’s useful to keep in mind for performance reasons that it’s better for policy extraction to have the optimal
Q-values of states, in which case a single argmax operation is all that is required to determine the optimal
action from a state. Storing only each U∗(s) means that we must recompute all necessary Q-values with the
Bellman equation before applying argmax, equivalent to performing a depth-1 expectimax.

Q-Value Iteration
In solving for an optimal policy using value iteration, we first find all the optimal values, then extract the
policy using policy extraction. However, you might have noticed that we also deal with another type of
value that encodes information about the optimal policy: Q-values.

Q-value iteration is a dynamic programming algorithm that computes time-limited Q-values. It is described
in the following equation:

Qk+1(s,a)←∑
s′

T (s,a,s′)[R(s,a,s′)+ γ max
a′

Qk(s′,a′)]

Note that this update is only a slight modification over the update rule for value iteration. Indeed, the only
real difference is that the position of the max operator over actions has been changed since we select an
action before transitioning when we’re in a state, but we transition before selecting a new action when we’re
in a Q-state. Once we have the optimal Q-values for each state and action, we can then find the policy for a
state by simply choosing the action which has the highest Q-value.

Policy Iteration
Value iteration can be quite slow. At each iteration, we must update the values of all |S| states (where |n|
refers to the cardinality operator), each of which requires iteration over all |A| actions as we compute the
Q-value for each action. The computation of each of these Q-values, in turn, requires iteration over each of
the |S| states again, leading to a poor runtime of O(|S|2|A|). Additionally, when all we want to determine
is the optimal policy for the MDP, value iteration tends to do a lot of overcomputation since the policy as
computed by policy extraction generally converges significantly faster than the values themselves. The fix
for these flaws is to use policy iteration as an alternative, an algorithm that maintains the optimality of value
iteration while providing significant performance gains. Policy iteration operates as follows:

1. Define an initial policy. This can be arbitrary, but policy iteration will converge faster the closer the
initial policy is to the eventual optimal policy.

2. Repeat the following until convergence:

• Evaluate the current policy with policy evaluation. For a policy π , policy evaluation means
computing Uπ(s) for all states s, where Uπ(s) is expected utility of starting in state s when
following π:

Uπ(s) = ∑
s′

T (s,π(s),s′)[R(s,π(s),s′)+ γUπ(s′)]

CS 188, Spring 2024, Note 18 4

Define the policy at iteration i of policy iteration as πi. Since we are fixing a single action for
each state, we no longer need the max operator which effectively leaves us with a system of |S|
equations generated by the above rule. Each Uπi(s) can then be computed by simply solving
this system. Alternatively, we can also compute Uπi(s) by using the following update rule until
convergence, just like in value iteration:

Uπi
k+1(s)←∑

s′
T (s,πi(s),s′)[R(s,πi(s),s′)+ γUπi

k (s′)]

However, this second method is typically slower in practice.

• Once we’ve evaluated the current policy, use policy improvement to generate a better policy.
Policy improvement uses policy extraction on the values of states generated by policy evaluation
to generate this new and improved policy:

πi+1(s) = argmax
a

∑
s′

T (s,a,s′)[R(s,a,s′)+ γUπi(s′)]

If πi+1 = πi, the algorithm has converged, and we can conclude that πi+1 = πi = π∗.

Let’s run through our racecar example one last time (getting tired of it yet?) to see if we get the same policy
using policy iteration as we did with value iteration. Recall that we were using a discount factor of γ = 0.5.

We start with an initial policy of Always go slow:

cool warm overheated
π0 slow slow −

Because terminal states have no outgoing actions, no policy can assign a value to one. Hence, it’s reasonable
to disregard the state overheated from consideration as we have done, and simply assign ∀i, Uπi(s) = 0 for
any terminal state s. The next step is to run a round of policy evaluation on π0:

Uπ0(cool) = 1 · [1+0.5 ·Uπ0(cool)]

Uπ0(warm) = 0.5 · [1+0.5 ·Uπ0(cool)]+0.5 · [1+0.5 ·Uπ0(warm)]

Solving this system of equations for Uπ0(cool) and Uπ0(warm) yields:

CS 188, Spring 2024, Note 18 5

cool warm overheated
Uπ0 2 2 0

We can now run policy extraction with these values:

π1(cool) = argmax{slow : 1 · [1+0.5 ·2], f ast : 0.5 · [2+0.5 ·2]+0.5 · [2+0.5 ·2]}
= argmax{slow : 2, f ast : 3}
= f ast

π1(warm) = argmax{slow : 0.5 · [1+0.5 ·2]+0.5 · [1+0.5 ·2], f ast : 1 · [−10+0.5 ·0]}
= argmax{slow : 3, f ast :−10}
= slow

Running policy iteration for a second round yields π2(cool) = f ast and π2(warm) = slow. Since this is the
same policy as π1, we can conclude that π1 = π2 = π∗. Verify this for practice!

cool warm
π0 slow slow
π1 f ast slow
π2 f ast slow

This example shows the true power of policy iteration: with only two iterations, we’ve already arrived at the
optimal policy for our racecar MDP! This is more than we can say for when we ran value iteration on the
same MDP, which was still several iterations from convergence after the two updates we performed.

Summary
The material presented above has much opportunity for confusion. We covered value iteration, policy iter-
ation, policy extraction, and policy evaluation, all of which look similar, using the Bellman equation with
subtle variation. Below is a summary of the purpose of each algorithm:

• Value iteration: Used for computing the optimal values of states, by iterative updates until conver-
gence.

• Policy evaluation: Used for computing the values of states under a specific policy.

• Policy extraction: Used for determining a policy given some state value function. If the state values
are optimal, this policy will be optimal. This method is used after running value iteration, to compute
an optimal policy from the optimal state values; or as a subroutine in policy iteration, to compute the
best policy for the currently estimated state values.

• Policy iteration: A technique that encapsulates both policy evaluation and policy extraction and is
used for iterative convergence to an optimal policy. It tends to outperform value iteration, by virtue of
the fact that policies usually converge much faster than the values of states.

CS 188, Spring 2024, Note 18 6

