Spring 2024 Regular Discussion 12 Solutions

| CalDining Bandits

You're an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you
take action a to use your meal swipe at Crossroads (a = X), Cafe 3 (a = (), or Golden Bear Cafe (a = G) (the
other dining halls are too inconvenient). Let a; be the action you take on day i.

Suppose that the reward you get from croads (X) is uniformly distributed between —10 and 50, the reward you
get from Cafe 3 (C) is uniformly distributed between 0 and 30, and the reward you get from GBC (G) is always
15.

(a) What is the optimal value V*? Which dining hall has the best expected reward?
V* = argmax,E(r|a) =
The best action is to go to croads (hot take).
(b) What is the optimality gap A¢ for the action of going to Cafe 3 (C)?
Q(C)=E(r|C)=15
Ac=V*-Q(C)=5
(c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action C.
What is the timestep regret under this policy?

= E[V* = Q(a)] = V* = Q(C) =5

(d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day.
What is the regret [; for one action under this policy?

Iy = BE[V* — Q(ay)]

=2V = QX))+ :(V* = Q(0) + (V" = Q(G))
=0+4+35+2

10
3

(e) Suppose you follow the random policy from the previous part for 5 days, taking actions X, C,C, G, X and
getting rewards 10, 20, 22,18, —10. What is the total regret for this policy? (Hint: Trick question?)

In this class, regret is used to refer to ”expected suboptimality”, and total regret is also an expectation.
As such, the total regret is 5 times the result from the previous part, so

Ls =

NE

Note that total regret doesn’t always have to be a linear multiplication of the regret for one step! If your
policy changes with time/new observations, your regret at each step might change as time goes on. For
example, using the UCBI1 algorithm leads to logarithmic total regret.

(f) True or False: Using the UCBLI algorithm for this problem would lead to logarithmic total regret, after
enough days.

True, taken directly from lecture slides.

Y Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here z is a
single real-valued input feature with an associated class y* (0 or 1). There are two weight parameters w; and
ws, and non-linearity functions g; and go (to be defined later, below). The network will output a value as
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, below), to compare the prediction as with the true class y*.

zZ1 — Q ay — 29 — @ag — Loss

1. Perform the forward pass on this network, writing the output values for each node z1,a1, 22 and as in
terms of the node’s input values:

Z1 = T *x Wy

a1 = gi1(z1)
Z9 = A1 * Wa
az = 92(22)

2. Compute the loss Loss(az,y*) in terms of the input z, weights w;, and activation functions g;:

Recursively substituting the values computed above, we have:

Loss(az,y") = Loss(ga(ws * g1(wy *xx)),y")

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive %Li;js.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be

helpful; you may use any of those variables.)

OLoss 0Loss Oag 029

Ows Oas Ozy Ows

4. Suppose the loss function is quadratic, Loss(az,y*) = %(ag—y*)2, and g1 and g, are both sigmoid functions
g(z) = l-r% (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that 8%(;) = g(2)(1 — g(z)) for the sigmoid function, write

% in terms of the values from the forward pass, y*, a1, and as:
w2

First we’ll compute the partial derivatives at each node:

0Loss

9a, — (2~Y)

9 0

6%2 _ 9;52) = g2(22)(1 — g2(22)) = aa(1 — az)
Om _,

0w2 -

Now we can plug into the chain rule from part 3:
OLoss OLoss Day 0z
Ows dag 0Ozg Ows

= (ag —y") xaz(1 —az) * a;

5. Now use the chain rule to derive %L—Iifs as a product of partial derivatives at each node used in the chain

rule: .
OLoss OLoss Oaz Oz Oay 021

a’wl - aaz 822 6@1 021 8w1

6. Finally, write agifs in terms of z,y*, w;, a;, z;: The partial derivatives at each node (in addition to the

ones we computed in Part 4) are:

92 _

8@1 e

9 o)

87(2 = galifl) :gl(Zl)(l—gl(zl)) :al(l—(ll)
9a _,

80,1 -

Plugging into the chain rule from Part 5 gives:

0Loss O0Loss Day 0z9 Day 071

8w1 o 8a2 822 80,1 (921 E‘)wl

= (ag —y") *az(l —ag) xwyxa1(l —ay) *x

7. What is the gradient descent update for w; with step-size « in terms of the values computed above?

wy wy — afag —y*) xas(l —ag) xwe xay (1 —ay) *x

