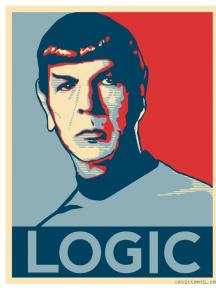
CS 188: Artificial Intelligence

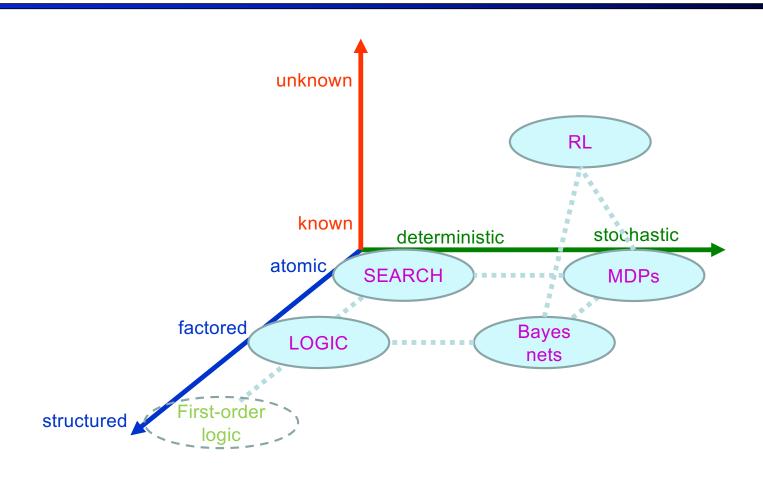
Propositional Logic I



Slides from Stuart Russell

University of California, Berkeley

Outline of the course



Outline

1. Propositional Logic I

- Basic concepts of knowledge, logic, reasoning
- Propositional logic: syntax and semantics, Pacworld example
- Inference by theorem proving

2. Propositional logic II

- Inference by model checking
- A Pac agent using propositional logic

3. First-order logic

Agents that know things

- Agents acquire knowledge through perception, learning, language
 - Knowledge of the effects of actions ("transition model")
 - Knowledge of how the world affects sensors ("sensor model")
 - Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Can design and build gravitational wave detectors.....

Knowledge, contd.

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - *Tell* it what it needs to know (or have it *Learn* the knowledge)
 - Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented
- A single inference algorithm can answer any answerable question

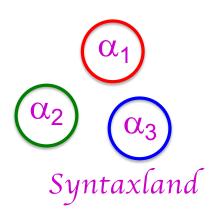
Knowledge base Inference engine

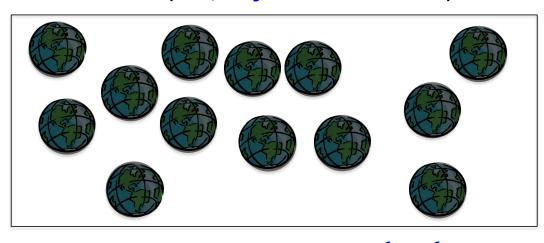
Domain-specific facts

Generic code

Logic

- Syntax: What sentences are allowed?
- Semantics:
 - What are the possible worlds?
 - Which sentences are true in which worlds? (i.e., definition of truth)





Semanticsland

Sentence: x > y

World1: x = 5; y = 2

World2: x = 2; y = 3

Different kinds of logic

Propositional logic

- Syntax: $P \lor (\neg Q \land R)$; $X_1 \Leftrightarrow (Raining \Rightarrow \neg Sunny)$
- Possible world: {P=true,Q=true,R=false,S=true} or 1101
- Semantics: $\alpha \wedge \beta$ is true in a world iff is α true and β is true (etc.)

First-order logic

- Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,f(x)) \Rightarrow f(x)=f(y)$
- Possible world: Objects o₁, o₂, o₃; P holds for <o₁,o₂>; Q holds for <o₃,o₂>; f(o₁)=o₁; Joe=o₃; etc.
- Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_j$ and ϕ holds for o_j ; etc.

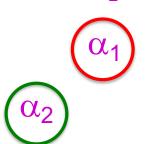
Different kinds of logic, contd.

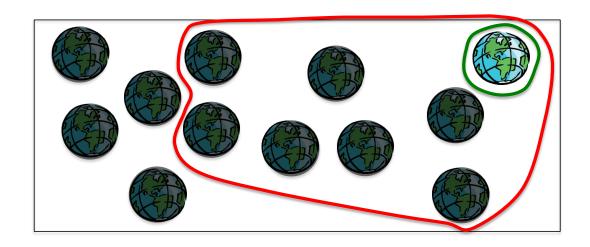
Relational databases:

- Syntax: ground relational sentences, e.g., Sibling(Ali,Bo)
- Possible worlds: (typed) objects and (typed) relations
- Semantics: sentences in the DB are true, everything else is false
 - Cannot express disjunction, implication, universals, etc.
 - Query language (SQL etc.) typically some variant of first-order logic
 - Often augmented by first-order rule languages, e.g., Datalog
- Knowledge graphs (roughly: relational DB + ontology of types and relations)
 - Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
 - Facebook network: 2.8 billion people, trillions of posts, maybe quadrillions of facts

Inference: entailment

- **Entailment**: $\alpha \models \beta$ (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true
 - I.e., the α -worlds are a subset of the β -worlds [$models(\alpha) \subseteq models(\beta)$]
- In the example, $\alpha_2 = \alpha_1$
- (Say α_2 is $\neg Q \land R \land S \land W$ α_1 is $\neg Q$)





Inference: proofs

- A proof is a *demonstration* of entailment between α and β
- Sound algorithm: everything it claims to prove is in fact entailed
- Complete algorithm: every that is entailed can be proved

Inference: proofs

- Method 1: model-checking
 - For every possible world, if α is true make sure that is β true too
 - OK for propositional logic (finitely many worlds); not easy for first-order logic
- Method 2: theorem-proving
 - Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
 - E.g., from $P \land (P \Rightarrow Q)$, infer Q by *Modus Ponens*

Propositional logic syntax

- Given: a set of proposition symbols {X₁,X₂,..., X_n}
 - (we often add True and False for convenience)
- X_i is a sentence
- If α is a sentence then $-\alpha$ is a sentence
- If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- If α and β are sentences then $\alpha \vee \beta$ is a sentence
- If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- And p.s. there are no other sentences!

Propositional logic semantics

- Let m be a model assigning true or false to $\{X_1, X_2, ..., X_n\}$
- If α is a symbol then its truth value is given in m
- $-\alpha$ is true in *m* iff α is false in *m*
- $\alpha \wedge \beta$ is true in m iff α is true in m and β is true in m
- $\alpha \vee \beta$ is true in m iff α is true in m or β is true in m
- $\alpha \Rightarrow \beta$ is true in m iff α is false in m or β is true in m
- $\alpha \Leftrightarrow \beta$ is true in m iff $\alpha \Rightarrow \beta$ is true in m and $\beta \Rightarrow \alpha$ is true in m

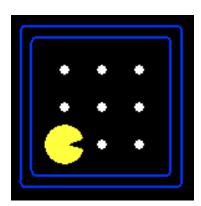
Propositional logic semantics in code

```
function PL-TRUE?(\alpha, model) returns true or false
  if \alpha is a symbol then return Lookup(\alpha, model)
  if Op(\alpha) = \neg then return not(PL-TRUE?(Arg1(\alpha),model))
  if Op(\alpha) = \wedge then return and (PL-TRUE? (Arg1(\alpha), model),
                                      PL-TRUE?(Arg2(\alpha),model))
  etc.
(Sometimes called "recursion over syntax")
   ■ Sentence: P \wedge (\neg Q \vee R)
   Model/possible-world/assignment-of-values-variables:
```

{P=true,Q=true,R=false} or 110

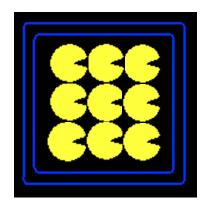
Example: Partially observable Pacman

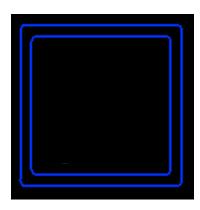
- Pacman knows the map but perceives just wall/gap to NSEW
- Formulation: what variables do we need?
 - Wall locations
 - Wall_0,0 there is a wall at [0,0]
 - Wall_0,1 there is a wall at [0,1], etc. (N symbols for N locations)
 - Percepts
 - Blocked_W (blocked by wall to my West) etc.
 - Blocked_W_0 (blocked by wall to my West <u>at time 0</u>) etc. (4T symbols for T time steps)
 - Actions
 - W_0 (Pacman moves West at time 0), E_0 etc. (4T symbols)
 - Pacman's location
 - At_0,0_0 (Pacman is at [0,0] at time 0), At_0,1_0 etc. (NT symbols)

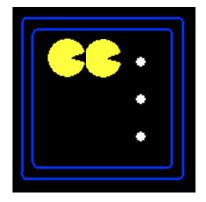


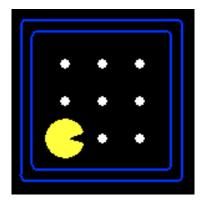
How many possible worlds?

- N locations, T time steps => N + 4T + 4T + NT = O(NT) variables
- 2^{O(NT)} possible worlds!
- N=200, $T=400 => ~10^{24000}$ worlds
- Each world is a complete "history"
 - But most of them are pretty weird!



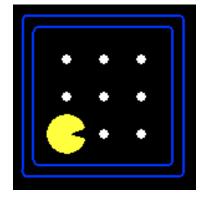






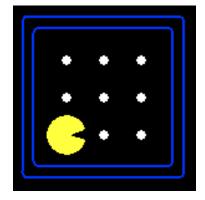
Pacman's knowledge base: Map

- Pacman knows where the walls are:
 - Wall_0,0 ∧ Wall_0,1 ∧ Wall_0,2 ∧ Wall_0,3 ∧ Wall_0,4 ∧ Wall_1,4 ∧ ...
- Pacman knows where the walls aren't!
 - \neg Wall_1,1 \land \neg Wall_1,2 \land \neg Wall_1,3 \land \neg Wall_2,1 \land \neg Wall_2,2 \land ...



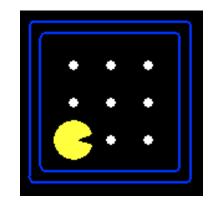
Pacman's knowledge base: Initial state

- Pacman doesn't know where he is
- But he knows he's somewhere!
 - At_1,1_0 ∨ At_1,2_0 ∨ At_1,3_0 ∨ At_2,1_0 ∨ ...
- And he knows he's not in more than one place!
 - ¬ (At_1,1_0 ∧ At_1,2_0) ∧ ¬ (At_1,1_0 ∧ At_1,3_0) ...



Pacman's knowledge base: Sensor model

- State facts about how Pacman's percepts arise...
 - <Percept variable at t> ⇔ <some condition on world at t>
- Pacman perceives a wall to the West at time t if and only if he is in x,y and there is a wall at x-1,y
 - Blocked_W_0 ⇔ ((At_1,1_0 ∧ Wall_0,1) v (At_1,2_0 ∧ Wall_0,2) v (At_1,3_0 ∧ Wall_0,3) v)
 - 4T sentences, each of size O(N)
 - Note: these are valid for any map



Pacman's knowledge base: Transition model

- How does each state variable at each time gets its value?
 - Here we care about location variables, e.g., At_3,3_17
- A state variable X gets its value according to a successor-state axiom
 - $X_t \Leftrightarrow [X_{t-1} \land \neg(\text{some action_t-1 made it false})] \lor [\neg X_{t-1} \land (\text{some action_t-1 made it true})]$
- For Pacman location:
 - At_3,3_17 ⇔ [At_3,3_16 ∧ ¬((¬Wall_3,4 ∧ N_16) v (¬Wall_4,3 ∧ E_16) v ...)]
 v [¬At_3,3_16 ∧ ((At_3,2_16 ∧ ¬Wall_3,3 ∧ N_16) v (At_2,3_16 ∧ ¬Wall_3,3 ∧ E_16) v ...)]

How many sentences?

- Vast majority of KB occupied by O(NT) transition model sentences
 - Each about 10 lines of text
 - N=200, T=400 => ~800,000 lines of text, or 20,000 pages
- This is because propositional logic has limited expressive power
- Are we really going to write 20,000 pages of logic sentences????
- No, but your code will generate all those sentences!
- In first-order logic, we need O(1) transition model sentences
- (State-space search uses atomic states: how do we keep the transition model representation small???)

Entails vs. Implies

- Entails: $\alpha \models \beta$
- Implies: $\alpha \Rightarrow \beta$
- One is a well-formed sentence in proposition logic
- One is a fact about sets of models where sentences are true
- Intuitive connection?
- KB is a set of sentences (or KB is one sentence with lots of \s\s)
- If $\alpha \Rightarrow \beta \in KB$, then $\alpha \land KB = \beta$ (Modus ponens)
- If you want $\alpha \wedge KB = \beta$, good idea to put $\alpha \Rightarrow \beta \in KB$

Some reasoning tasks

- Localization with a map and local sensing:
 - Given an initial KB, plus a sequence of percepts and actions, where am I?
- Mapping with a location sensor:
 - Given an initial KB, plus a sequence of percepts and actions, what is the map?
- Simultaneous localization and mapping:
 - Given ..., where am I and what is the map?
- Planning:
 - Given ..., what action sequence is guaranteed to reach the goal?
- ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!

Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
 - A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for Pacman covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved