Q1. First Order Logic

Consider a vocabulary with the following symbols:

•	Occuption(p, o)	:	Predicate.	Person	n	has	occuption	o.

- Customer(p1, p2): Predicate. Person p1 is a customer of person p2.
- Boss(p1, p2): Predicate. Person p1 is a boss of person p2.
- Doctor, Surgeon, Lawyer, Actor: Constants denoting occupations.
- *Emily*, *Joe*: Constants denoting people.

Use these symbols to write the following assertions in first-order logic:

- (i) Emily is either a surgeon or a lawyer.
- (ii) Joe is an actor, but he also holds another job.
- (iii) All surgeons are doctors.
- (iv) Joe does not have a lawyer (i.e., is not a customer of any lawyer).
- (v) Emily has a boss who is a lawyer.
- (vi) There exists a lawyer all of whose customers are doctors.
- (vii) Every surgeon has a lawyer.

Q2. Logic

- (a) Prove, or find a counterexample to, each of the following assertions:
 - (i) If $\alpha \models \gamma$ or $\beta \models \gamma$ (or both) then $(\alpha \land \beta) \models \gamma$
 - (ii) If $(\alpha \land \beta) \models \gamma$ then $\alpha \models \gamma$ or $\beta \models \gamma$ (or both).
 - (iii) If $\alpha \models (\beta \lor \gamma)$ then $\alpha \models \beta$ or $\alpha \models \gamma$ (or both).
- (b) Decide whether each of the following sentences is valid, unsatisfiable, or neither.
 - (i) Smoke \Longrightarrow Smoke
 - (ii) $Smoke \implies Fire$
 - (iii) $(Smoke \implies Fire) \implies (\neg Smoke \implies \neg Fire)$
 - (iv) $Smoke \lor Fire \lor \neg Fire$
 - (v) $((Smoke \land Heat) \implies Fire) \iff ((Smoke \implies Fire) \lor (Heat \implies Fire))$
 - (vi) $(Smoke \implies Fire) \implies ((Smoke \land Heat) \implies Fire)$
 - (vii) $Big \lor Dumb \lor (Big \implies Dumb)$
- (c) Suppose an agent inhabits a world with two states, S and $\neg S$, and can do exactly one of two actions, a and b. Action a does nothing and action b flips from one state to the other. Let S^t be the proposition that the agent is in state S at time t, and let a^t be the proposition that the agent does action a at time t (similarly for b^t).
 - (i) Write a successor-state axiom for S^{t+1} .
 - (ii) Convert the sentence in the previous part into CNF.