CS 188 Spring 2024

Projects / Project 4

Project 4. Ghostbusters

Due: Friday, March 22, 11:59 PM PT.

| can hear you, ghost.
Running won't save you from my
Particle filter!

TABLE OF CONTENTS
e Introduction

» Ghostbusters and Bayes Nets

« Bayes Nets and Factors
* Question 1 (2 points): Bayes Net Structure

* Question 2 (3 points): Join Factors

« Question 3 (2 points): Eliminate (not ghosts yet)

* Question 4 (2 points): Variable Elimination

« Question 5a: DiscreteDistribution Class

« Question 5b (1 point): Observation Probability

« Question 6 (2 points): Exact Inference Observation

« Question 7 (2 points): Exact Inference with Time Elapse

» Question 8 (1 point): Exact Inference Full Test

« Question 9 (1 points): Approximate Inference Initialization and Beliefs
« Question 10 (2 points): Approximate Inference Observation

« Question 11 (2 points): Approximate Inference with Time Elapse

e Submission

Introduction

Pacman spends his life running from ghosts, but things were not always so. Legend has it that many
years ago, Pacman’s great grandfather Grandpac learned to hunt ghosts for sport. However, he was
blinded by his power and could only track ghosts by their banging and clanging.

In this project, you will design Pacman agents that use sensors to locate and eat invisible ghosts.
You'll advance from locating single, stationary ghosts to hunting packs of multiple moving ghosts

with ruthless efficiency.

This project includes an autograder for you to grade your answers on your machine. This can be run

on all questions with the command:

python autograder.py

It can be run for one particular question, such as g2, by:
python autograder.py -q g2

It can be run for one particular test by commands of the form:

python autograder.py -t test_cases/ql/1-0ObsProb

The code for this project contains the following files, available as a zip archive.

Files you'll edit:

bustersAgents.py Agents for playing the Ghostbusters variant of Pacman.
inference.py Code for tracking ghosts over time using their sounds.
factorOperations.py Operations to compute new joint or magrinalized probability tables.

Files you might want to look at:
bayesNet.py The BayesNet and Factor classes.

Supporting files you can ignore:

busters.py The main entry to Ghostbusters (replacing Pacman.py).
bustersGhostAgents.py New ghost agents for Ghostbusters.

distanceCalculator.py Computes maze distances, caches results to avoid re-computing.
game.py Inner workings and helper classes for Pacman.

ghostAgents.py Agents to control ghosts.

graphicsDisplay.py Graphics for Pacman.

graphicsUtils.py Support for Pacman graphics.

keyboardAgents.py Keyboard interfaces to control Pacman.

layout.py Code for reading layout files and storing their contents.

util.py Utility functions.

Files to Edit and Submit: You will fill in portions of bustersAgents.py, inference.py, and
factorOperations.py during the assignment. Once you have completed the assignment, you will
submit these files to Gradescope (for instance, you can upload all .py files in the folder). Please do

not change the other files in this distribution.

Evaluation: Your code will be autograded for technical correctness. Please do not change the names
of any provided functions or classes within the code, or you will wreak havoc on the autograder.

However, the correctness of your implementation — not the autograder’s judgements — will be the

final judge of your score. If necessary, we will review and grade assignments individually to ensure

that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class for
logical redundancy. If you copy someone else’s code and submit it with minor changes, we will
know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to submit
your own work only; please don't let us down. If you do, we will pursue the strongest consequences

available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use them.
If you can’t make our office hours, let us know and we will schedule more. We want these projects to
be rewarding and instructional, not frustrating and demoralizing. But, we don't know when or how

to help unless you ask.

Discussion: Please be careful not to post spoilers.

Ghostbusters and Bayes Nets

In the CS 188 version of Ghostbusters, the goal is to hunt down scared but invisible ghosts. Pacman,
ever resourceful, is equipped with sonar (ears) that provides noisy readings of the Manhattan
distance to each ghost. The game ends when Pacman has eaten all the ghosts. To start, try playing a

game yourself using the keyboard.

python busters.py

The blocks of color indicate where the each ghost could possibly be, given the noisy distance
readings provided to Pacman. The noisy distances at the bottom of the display are always non-
negative, and always within 7 of the true distance. The probability of a distance reading decreases
exponentially with its difference from the true distance.

Your primary task in this project is to implement inference to track the ghosts. For the keyboard
based game above, a crude form of inference was implemented for you by default: all squares in
which a ghost could possibly be are shaded by the color of the ghost. Naturally, we want a better
estimate of the ghost's position. Fortunately, Bayes Nets provide us with powerful tools for making
the most of the information we have. Throughout the rest of this project, you will implement
algorithms for performing both exact and approximate inference using Bayes Nets. The project is

challenging, so we do encouarge you to start early and seek help when necessary.

While watching and debugging your code with the autograder, it will be helpful to have some
understanding of what the autograder is doing. There are 2 types of tests in this project, as
differentiated by their .test files found in the subdirectories of the test_cases folder. For tests of
class DoubleInferenceAgentTest, you will see visualizations of the inference distributions generated
by your code, but all Pacman actions will be pre-selected according to the actions of the staff
implementation. This is necessary to allow comparision of your distributions with the staff's
distributions. The second type of test is GameScoreTest, in which your BustersAgent will actually
select actions for Pacman and you will watch your Pacman play and win games.

For this project, it is possible sometimes for the autograder to time out if running the tests with
graphics. To accurately determine whether or not your code is efficient enough, you should run the
tests with the --no-graphics flag. If the autograder passes with this flag, then you will receive full

points, even if the autograder times out with graphics.

Bayes Nets and Factors

First, take a look at bayesNet.py to see the classes you'll be working with — BayesNet and Factor.

You can also run this file to see an example BayesNet and associated Factors: python bayesNet.py .

You should look at the printStarterBayesNet function — there are helpful comments that can make
your life much easier later on.

The Bayes Net created in this function is shown below:
(Raining —> Traffic <— Ballgame)
A summary of the terminology is given below:

« Bayes Net: This is a representation of a probabilistic model as a directed acyclic graph and a set
of conditional probability tables, one for each variable, as shown in lecture. The Traffic Bayes Net
above is an example.

+ Factor: This stores a table of probabilities, although the sum of the entries in the table is not
necessarily 1. A factor is of the general form f(Xy, ..., X, Y1, -, Yn |
Ziy ooy Zp, Wi, ... ,wq). Recall that lower case variables have already been assigned. For each
possible assignment of values to the X; and Z; variables, the factor stores a single number. The

Zj and wy, variables are said to be conditioned while the X; and y; variables are unconditioned.
« Conditional Probability Table (CPT): This is a factor satisfying two properties:

1 Its entries must sum to 1 for each assignment of the conditional variables.

2 There is exactly one unconditioned variable. The Traffic Bayes Net stores the following CPTs:
P(Raining), P(Ballgame), \(P(Traffic\midBallgame,Raining)\).

Question 1 (2 points): Bayes Net Structure

Implement the constructBayesNet function in inference.py. It constructs an empty Bayes Net with
the structure described below. A Bayes Net is incomplete without the actual probabilities, but factors
are defined and assigned by staff code separately; you don't need to worry about it. If you are
curious, you can take a look at an example of how it works in printStarterBayesNet in

bayesNet.py . Reading this function can also be helpful for doing this question.

The simplified ghost hunting world is generated according to the following Bayes net:

Don’'t worry if this looks complicated! We'll take it step by step. As described in the code for
constructBayesNet , we build the empty structure by listing all of the variables, their values, and the

edges between them. This figure shows the variables and the edges, but what about their domains?

« Add variables and edges based on the diagram.

« Pacman and the two ghosts can be anywhere in the grid (we ignore walls for this). Add all

possible position tuples for these.

« Observations here are non-negative, equal to Manhattan distances of Pacman to ghosts =+ noise.

Grading: To test and debug your code, run

python autograder.py -q ql

Question 2 (3 points): Join Factors

Implement the joinFactors function in factorOperations.py. It takes in a list of Factor s and

returns a new Factor whose probability entries are the product of the corresponding rows of the
input Factors.

joinFactors can be used as the product rule, for example, if we have a factor of the form P (X |
Y') and another factor of the form P(Y'), then joining these factors will yield P(X,Y"). So,
joinFactors allows us to incorporate probabilities for conditioned variables (in this case, Y').
However, you should not assume that joinFactors is called on probability tables — it is possible to

call joinFactors on Factor s whose rows do not sum to 1.

Grading: To test and debug your code, run

python autograder.py -q g2

It may be useful to run specific tests during debugging, to see only one set of factors print out. For
example, to only run the first test, run:

python autograder.py -t test_cases/q2/1-product-rule

Hints and Observations:

« Your joinFactors should return a new Factor.
« Here are some examples of what joinFactors can do:
* joinfactors (P(X | Y),P(Y)) = P(X,Y)
* joinFactors (P(V,W | X,Y,Z),P(X,Y | Z2))=P(V,W,X,Y | Z)
+ joinfactors (P(X | Y, Z), P(Y)) = P(X,Y | Z)
« joinFactors (P(V | W),P(X |Y),P(Z))=P(V,X,Z | W,Y)

« For a general joinFactors operation, which variables are unconditioned in the returned Factor ?

Which variables are conditioned?

* Factor s store a variableDomainsDict, which maps each variable to a list of values that it can
take on (its domain). A Factor gets its variableDomainsDict from the BayesNet from which it
was instantiated. As a result, it contains all the variables of the BayesNet, not only the
unconditioned and conditioned variables used in the Factor. For this problem, you may assume
that all the input Factor s have come from the same BayesNet, and so their

variableDomainsDicts are all the same.

Question 3 (2 points): Eliminate (not ghosts yet)
Implement the eliminate function in factorOperations.py. It takes a Factor and a variable to

eliminate and returns a new Factor that does not contain that variable. This corresponds to
summing all of the entries in the Factor which only differ in the value of the variable being

eliminated.

Grading: To test and debug your code, run
python autograder.py -q g3

It may be useful to run specific tests during debugging, to see only one set of factors print out. For
example, to only run the first test, run:

python autograder.py -t test_cases/q3/1-simple-eliminate

Hints and Observations:

* Your eliminate should return a new Factor.

« eliminate can be used to marginalize variables from probability tables. For example:
+ eliminate (P(X,Y | 2),Y) = P(X | Z)
+ eliminate (P(X,Y | Z2),X)=P(Y | Z2)

« For a general eliminate operation, which variables are unconditioned in the returned Factor?
Which variables are conditioned?

« Remember that Factor s store the variableDomainsDict of the original BayesNet, and not only
the unconditioned and conditioned variables that they use. As a result, the returned Factor

should have the same variableDomainsDict as the input Factor.

Question 4 (2 points): Variable Elimination

Implement the inferenceByVariableElimination function in inference.py. It answers a
probabilistic query, which is represented using a BayesNet, a list of query variables, and the

evidence.

Grading: To test and debug your code, run

python autograder.py -q g4

It may be useful to run specific tests during debugging, to see only one set of factors print out. For

example, to only run the first test, run:

python autograder.py -t test_cases/q4/1-disconnected-eliminate

Hints and Observations:

« The algorithm should iterate over hidden variables in elimination order, performing joining over

and eliminating that variable, until the only the query and evidence variables remain.

« The sum of the probabilities in your output factor should sum to 1 (so that it is a true conditional
probability, conditioned on the evidence).

« Look at the inferenceByEnumeration function in inference.py for an example on how to use the
desired functions. (Reminder: Inference by enumeration first joins over all the variables and then
eliminates all the hidden variables. In contrast, variable elimination interleaves join and eliminate
by iterating over all the hidden variables and perform a join and eliminate on a single hidden
variable before moving on to the next hidden variable.)

« You will need to take care of the special case where a factor you have joined only has one
unconditioned variable (the docstring specifies what to do in greater detail).

Question 5a: DiscreteDistribution Class

Unfortunately, having timesteps will grow our graph far too much for variable elimination to be
viable. Instead, we will use the Forward Algorithm for HMM's for exact inference, and Particle
Filtering for even faster but approximate inference.

For the rest of the project, we will be using the DiscreteDistribution class defined in inference.py
to model belief distributions and weight distributions. This class is an extension of the built-in
Python dictionary class, where the keys are the different discrete elements of our distribution, and
the corresponding values are proportional to the belief or weight that the distribution assigns that
element. This question asks you to fill in the missing parts of this class, which will be crucial for later

questions (even though this question itself is worth no points).

First, fill in the normalize method, which normalizes the values in the distribution to sum to one, but
keeps the proportions of the values the same. Use the total method to find the sum of the values
in the distribution. For an empty distribution or a distribution where all of the values are zero, do
nothing. Note that this method modifies the distribution directly, rather than returning a new

distribution.

Second, fill in the sample method, which draws a sample from the distribution, where the probability
that a key is sampled is proportional to its corresponding value. Assume that the distribution is not
empty, and not all of the values are zero. Note that the distribution does not necessarily have to be
normalized prior to calling this method. You may find Python'’s built-in random.random() function
useful for this question.

Question 5b (1 point): Observation Probability

In this question, you will implement the getObservationProb method in the InferenceModule base
class in inference.py . This method takes in an observation (which is a noisy reading of the distance
to the ghost), Pacman'’s position, the ghost's position, and the position of the ghost'’s jail, and
returns the probability of the noisy distance reading given Pacman'’s position and the ghost's
position. In other words, we want to return P(noisyDistance |

pacmanPosition, ghost Position).

The distance sensor has a probability distribution over distance readings given the true distance
from Pacman to the ghost. This distribution is modeled by the function
busters.getObservationProbability(noisyDistance, trueDistance), which returns
P(noisyDistance | trueDistance) and is provided for you. You should use this function to
help you solve the problem, and use the provided manhattanDistance function to find the distance
between Pacman'’s location and the ghost's location.

However, there is the special case of jail that we have to handle as well. Specifically, when we
capture a ghost and send it to the jail location, our distance sensor deterministically returns None,
and nothing else (observation = None if and only if ghost is in jail). One consequence of this is that if
the ghost's position is the jail position, then the observation is None with probability 1, and
everything else with probability 0. Make sure you handle this special case in your implementation;
we effectively have a different set of rules for whenever ghost is in jail, as well as whenever

observation is None.

To test your code and run the autograder for this question:

python autograder.py -q g5

Question 6 (2 points): Exact Inference Observation

In this question, you will implement the observeUpdate method in ExactInference class of
inference.py to correctly update the agent'’s belief distribution over ghost positions given an
observation from Pacman'’s sensors. You are implementing the online belief update for observing
new evidence. The observeUpdate method should, for this problem, update the belief at every
position on the map after receiving a sensor reading. You should iterate your updates over the
variable self.allPositions which includes all legal positions plus the special jail position. Beliefs
represent the probability that the ghost is at a particular location, and are stored as a
DiscreteDistribution object in a field called self.beliefs, which you should update.

Before typing any code, write down the equation of the inference problem you are trying to solve.
You should use the function self.getObservationProb thatyou wrote in the last question, which
returns the probability of an observation given Pacman's position, a potential ghost position, and
the jail position. You can obtain Pacman’s position using gameState.getPacmanPosition(), and the
jail position using self.getJailPosition() .

In the Pacman display, high posterior beliefs are represented by bright colors, while low beliefs are
represented by dim colors. You should start with a large cloud of belief that shrinks over time as
more evidence accumulates. As you watch the test cases, be sure that you understand how the

squares converge to their final coloring.

Note: your busters agents have a separate inference module for each ghost they are tracking. That's
why if you print an observation inside the observeUpdate function, you'll only see a single number
even though there may be multiple ghosts on the board.

To run the autograder for this question and visualize the output:

python autograder.py -q g6

If you want to run this test (or any of the other tests) without graphics you can add the following

flag:

python autograder.py -q g6 --no-graphics

Question 7 (2 points): Exact Inference with Time Elapse

In the previous question you implemented belief updates for Pacman based on his observations.
Fortunately, Pacman'’s observations are not his only source of knowledge about where a ghost may

be. Pacman also has knowledge about the ways that a ghost may move; namely that the ghost can

not move through a wall or more than one space in one time step.

To understand why this is useful to Pacman, consider the following scenario in which there is Pacman
and one Ghost. Pacman receives many observations which indicate the ghost is very near, but then
one which indicates the ghost is very far. The reading indicating the ghost is very far is likely to be
the result of a buggy sensor. Pacman'’s prior knowledge of how the ghost may move will decrease

the impact of this reading since Pacman knows the ghost could not move so far in only one move.

In this question, you will implement the elapseTime method in ExactInference. The elapseTime
step should, for this problem, update the belief at every position on the map after one time step
elapsing. Your agent has access to the action distribution for the ghost through
self.getPositionDistribution. In order to obtain the distribution over new positions for the ghost,

given its previous position, use this line of code:

newPosDist = self.getPositionDistribution(gameState, oldPos)

Where oldPos refers to the previous ghost position. newPosDist is a DiscreteDistribution object,
where for each position p in self.allPositions, newPosDist[p] is the probability that the ghost is
at position p attime t + 1, given that the ghost is at position oldPos at time t. Note that this call
can be fairly expensive, so if your code is timing out, one thing to think about is whether or not you
can reduce the number of calls to self.getPositionDistribution.

Before typing any code, write down the equation of the inference problem you are trying to solve. In
order to test your predict implementation separately from your update implementation in the

previous question, this question will not make use of your update implementation.

Since Pacman is not observing the ghost's actions, these actions will not impact Pacman’s beliefs.
Over time, Pacman'’s beliefs will come to reflect places on the board where he believes ghosts are
most likely to be given the geometry of the board and ghosts’ possible legal moves, which Pacman
already knows.

For the tests in this question we will sometimes use a ghost with random movements and other
times we will use the GoSouthGhost . This ghost tends to move south so over time, and without any
observations, Pacman'’s belief distribution should begin to focus around the bottom of the board. To

see which ghost is used for each test case you can look in the .test files.

The below diagram shows what the Bayes Net/ Hidden Markov model for what is happening. Still,
you should rely on the above description for implementation because some parts are implemented
for you (i.e. getPositionDistribution is abstracted to be P(G.1 | gameState, Gy)).

Ghost 0 t=0

Y

Ghost 0 t=1

Ghost 1 t=0

To run the autograder for this question and visualize the output:
python autograder.py -q q7

If you want to run this test (or any of the other tests) without graphics you can add the following
flag:

python autograder.py -q q7 --no-graphics

As you watch the autograder output, remember that lighter squares indicate that pacman believes a
ghost is more likely to occupy that location, and darker squares indicate a ghost is less likely to
occupy that location. For which of the test cases do you notice differences emerging in the shading

of the squares? Can you explain why some squares get lighter and some squares get darker?

Question 8 (1 point): Exact Inference Full Test

Now that Pacman knows how to use both his prior knowledge and his observations when figuring
out where a ghost is, he is ready to hunt down ghosts on his own. We will use your observeUpdate
and elapseTime implementations together to keep an updated belief distribution, and your simple
greedy agent will choose an action based on the latest ditsibutions at each time step. In the simple
greedy strategy, Pacman assumes that each ghost is in its most likely position according to his
beliefs, then moves toward the closest ghost. Up to this point, Pacman has moved by randomly
selecting a valid action.

Implement the chooseAction method in GreedyBustersAgent in bustersAgents.py . Your agent
should first find the most likely position of each remaining uncaptured ghost, then choose an action

that minimizes the maze distance to the closest ghost.

To find the maze distance between any two positions pos1 and pos2, use
self.distancer.getDistance(posl, pos2). To find the successor position of a position after an

action:

successorPosition = Actions.getSuccessor(position, action)

You are provided with 1ivingGhostPositionDistributions, a list of DiscreteDistribution objects

representing the position belief distributions for each of the ghosts that are still uncaptured.

If correctly implemented, your agent should win the game in g8/3-gameScoreTest with a score
greater than 700 at least 8 out of 10 times. Note: the autograder will also check the correctness of

your inference directly, but the outcome of games is a reasonable sanity check.

We can represent how our greedy agent works with the following modification to the previous

diagram:

Pacman t=1

Ghost 1 t=0

Obs 1 t=0

Pacman t=(0 ¥

To run the autograder for this question and visualize the output:

python autograder.py -q g8

If you want to run this test (or any of the other tests) without graphics you can add the following
flag:

python autograder.py -q g8 --no-graphics

Question 9 (1 points): Approximate Inference Initialization and
Beliefs

Approximate inference is very trendy among ghost hunters this season. For the next few questions,
you will implement a particle filtering algorithm for tracking a single ghost.

First, implement the functions initializeUniformly and getBeliefDistribution in the
ParticleFilter classin inference.py. A particle (sample) is a ghost position in this inference
problem. Note that, for initialization, particles should be evenly (not randomly) distributed across
legal positions in order to ensure a uniform prior. We recommend thinking about how the mod
operator is useful for initializeUniformly .

Note that the variable you store your particles in must be a list. A list is simply a collection of
unweighted variables (positions in this case). Storing your particles as any other data type, such as a
dictionary, is incorrect and will produce errors. The getBeliefDistribution method then takes the

list of particles and converts it into a DiscreteDistribution object.

To test your code and run the autograder for this question:

python autograder.py -q g9

Question 10 (2 points): Approximate Inference Observation

Next, we will implement the observeupdate method in the ParticleFilter classin inference.py.
This method constructs a weight distribution over self.particles where the weight of a particle is
the probability of the observation given Pacman'’s position and that particle location. Then, we

resample from this weighted distribution to construct our new list of particles.

You should again use the function self.getObservationProb to find the probability of an
observation given Pacman’s position, a potential ghost position, and the jail position. The sample
method of the DiscreteDistribution class will also be useful. As a reminder, you can obtain
Pacman's position using gameState.getPacmanPosition(), and the jail position using

self.getJailPosition() .

There is one special case that a correct implementation must handle. When all particles receive zero
weight, the list of particles should be reinitialized by calling initializeUniformly . The total method
of the DiscreteDistribution may be useful.

To run the autograder for this question and visualize the output:

python autograder.py -q ql0

If you want to run this test (or any of the other tests) without graphics you can add the following

flag:

python autograder.py -q ql0 --no-graphics

Question 11 (2 points): Approximate Inference with Time Elapse

Implement the elapseTime function in the ParticleFilter classin inference.py. This function
should construct a new list of particles that corresponds to each existing particle in self.particles
advancing a time step, and then assign this new list back to self.particles. When complete, you

should be able to track ghosts nearly as effectively as with exact inference.

Note that in this question, we will test both the elapseTime function in isolation, as well as the full

implementation of the particle filter combining elapseTime and observe.

As in the elapseTime method of the ExactInference class, you should use:

newPosDist = self.getPositionDistribution(gameState, oldPos)

This line of code obtains the distribution over new positions for the ghost, given its previous
position (oldPos). The sample method of the DiscreteDistribution class will also be useful.

To run the autograder for this question and visualize the output:

python autograder.py -q qll

If you want to run this test (or any of the other tests) without graphics you can add the following
flag:

python autograder.py -q gqll --no-graphics

Note that even with no graphics, this test may take several minutes to run.

Submission

In order to submit your project upload the Python files you edited. For instance, use Gradescope'’s

upload on all .py files in the project folder.

