EECS 189 Introduction to Machine Leaming
Fall 2020 Note 14

| Training Neural Networks

We have seen that first-order optimization techniques such as gradient descent and stochastic
gradient descent are effective tools for minimizing differentiable cost functions. In order to im-
plement these techniques, we need to be able to compute the gradient of the cost function with
respect to the weights. The chain rule allows us to compute these derivatives in principle, but as
we will see, the order of the computations matters in neural networks. The backpropagation algo-
rithm takes advantage of the directed acyclic graph (DAG) nature of feedforward neural networks
to calculate these derivatives efficiently.

1.1 Computational graphs

We assume that the our network can be expressed as a finite directed acyclic graph G = (V, E),
sometimes called the computational graph of the network. Each vertex v; € V represents the
result of some differentiable' computation. Each edge represents a computational dependency:
there is an edge (v;, v;) € E if and only if the value computed at v; is used to compute v;. We denote
the set of outgoing neighbors of a node v; by

out(v;) = {v; € V: (v;,v,) € E}

Furthermore, some of these vertices have special significance. There is a vertex £ € V, representing
the loss function, which contains no outgoing edges (i.e. out({) = @). There is also some subset of
vertices W C V representing the trainable parameters of the network. Our objective is to efficiently
calculate 2= for each w; € W.

The primary mathematical tool employed in backpropagation is the chain rule. This allows us to
write

o _ N oy

(9\/’,‘ B) an 8v,-

vjeout(v;

The intuition here is that the value computed at v; affects potentially all of the vertices to which it
is an input, and each of those vertices affects the loss in some way. The total contribution of v; to
the loss must be summed over these downstream effects.

We could expand recursively to get an expression for each weight:

o _ ooy,

6w,- v Coutn) an ﬁw,-

' A number of common neural network operations, such as the ReLU activation function, are not everywhere differentiable. In
practice it is sufficient to be differentiable except at finitely many points.

Note 14, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1

ot Ovy Ov;
VRPN T e

vj€out(w;) veout(v;)

ot oW v gy
- Z ENGE NG R YO
paths v v® from witof
However, computing the derivative by evaluating this expression is quite inefficient, as many terms
appear in more than one path from w; to ¢, so we are doing more work than necessary.

1.2 Backpropagation

The backpropagation algorithm combines the chain rule with the principles of dynamic program-
ming: dividing a large problem into simpler subproblems, solving these and storing their solutions,
and combining the stored solutions to solve larger subproblems or the original problem. In this
context, the large problem is computing V£(W), and the subproblems are computing the individual
terms ﬂ The key observation from the first chain rule expression above is that we can reuse work
by computmg in a “back to front” order. That is, before computlng , we should compute

foreachv; € out(v). Because our computational graph is a DAG, such a topologlcal ordering can
always and efficiently’ be computed via a topological sort.> Then the subproblem of computing
a can be easily accomplished by combining the stored values 2 P L with the terms a_ which can
typlcally be computed analytically based on our knowledge of what mathematical computations
each vertex performs. Let us consider a few examples of computations that the vertices of neural
network computation graphs perform, to get a concrete sense of what these % terms look like.

1.3 Derivatives of common neural network elements

1.3.1 Fully connected layers

In a standard fully-connected layer, each vertex calculates z; as a linear combination of the activa-
tions a; of the previous layer, with weights w ;:

Zj = E Wi
i

We have omitted layer indexing to keep the notation simple, but keep in mind that this q; is the
result of some computation performed at the previous layer®, and these z; are likely used as inputs
to vertices at later layers. This part of the computational graph looks like

2 In time linear in the size of the graph: O(|V| + |E]).
3 See CS 170!
unless it is the input layer

Note 14, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2

wy;

In the image above, out(w ;) = {z;}, and it is straightforward to see that

0z j
(9Wji
SO
o¢ o¢
6Wﬁ aZj

Observe that we must use the activations a; that were previously computed in the forward pass.

We must also compute the derivatives z; with respect to a; so that we can pass these backward to

earlier layers. In the image above, out(a;) = {zy, ..., z}, and it is straightforward to see that
02 Jj
— =W
ﬁai !
SO ’
ot ot
aai — aZj

1.3.2 Element-wise nonlinearities

After taking linear combinations, it is typical to insert a nonlinearity. (Recall from the previous
note that nonlinearities are at the heart of neural networks’ expressive power.) In most cases,
this nonlinearity is applied elementwise. Again omitting layer indexing, we might write such a
computation as

a; = 0(z)

where z; is the value from the previous layer, and o is the activation function. This part of the
computational graph looks like

Note 14, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3

In the image above, out(z;) = {a;}, and it is straightforward to see that

(9(1,' ,
a_Z,' - (Zl)
> or or
a_z,- = 0—10' (zi)

Note 14, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission.

	Training Neural Networks
	Computational graphs
	Backpropagation
	Derivatives of common neural network elements
	Fully connected layers
	Element-wise nonlinearities

