CS 189 Introduction to Machine Learning
Spring 2018 Note 18

1 Gaussian Discriminant Analysis

Recall the idea of generative models: we classify an arbitrary datapoint x with the class label that
maximizes the joint probability p(x,Y") over the label Y:

y = argmax p(x,Y = k)
k

Generative models typically form the joint distribution by explicitly forming the following:

* A prior probability distribution over all classes:

P(k) = P(class = k)

* A conditional probability distribution for each class k € {1,2, ..., K'}:

pr(X) = p(X|class k)

In total there are K + 1 probability distributions: 1 for the prior, and K for all of the individual
classes. Note that the prior probability distribution is a categorical distribution over the K discrete
classes, whereas each class conditional probability distribution is a continuous distribution over R?
(often represented as a Gaussian). Using the prior and the conditional distributions in conjunction,
we have (from Bayes’ rule) that maximizing the joint probability over the class labels is equivalent
to maximizing the posterior probability of the class label:

y = argmax p(x,Y = k) = argmax P(k) pi(x) = argmax P(Y = k|x)
k k k

Consider the example of digit classification. Suppose we are given dataset of images of hand-
written digits each with known values in the range {0, 1,2,...,9}. The task is, given an image
of a handwritten digit, to classify it to the correct digit. A generative classifier for this this task
would effectively form a the prior distribution and conditional probability distributions over the 10
possible digits and choose the digit that maximizes posterior probability:

y = argmax p(digit = k|image) = argmax P(digit = k) p(image|digit = k)
ke{0,1,2...,9) ke{0,1,2...,9}

Maximizing the posterior will induce regions in the feature space in which one class has the highest

posterior probability, and decision boundaries in between classes where the posterior probability
of two classes are equal.

Note 18, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 1



Gaussian Discriminant Analysis (GDA) is a specific generative method in which the class condi-
tional probability distributions are Gaussian: (X|Y = k) ~ N (p,, Xx). (Caution: the term “dis-
criminant” in GDA is misleading; GDA is a generative method, it is not a discriminative method!)

Assume that we are given a training set D = {(x;,y;)}, of n points. Estimating the prior

distribution is the same for any other generative model. The probability of a class k is
Nk

P(k)=—

(k) = =

where ny, is the number of training points that belong to class k. We can estimate the parameters of
the conditional distributions with MLE. Once we form the estimated prior conditional distributions,
we use Bayes’ Rule to directly solve the optimization problem

y = argmax p(k | x)
k

= arg max P(k) px(x)
k

arg Znax In(P(k)) + ln((\/g)dpk(x)>

— argmax In(P(1) — 5(x — i) Sy (x = ) — 5 n(154]) = Qu(x)

d
For future reference, let’s use Qx(x) = ln(x/ 27r) P(k) pr(x) to simplify our notation.

We classify an arbitrary test point

j= argmax Qu(x)
ke{1,2,...,.K}

GDA comes in two flavors: Quadratic Discriminant Analysis (QDA) in which the decision bound-
ary is quadratic, and Linear Discriminant Analysis (LDA) in which the decision boundary is linear.
We will now present both and compare them in detail.

1.1 QDA Classification

In Quadratic Discriminant Analysis (QDA), the class conditional probability distributions are
independent Gaussians — namely, the covariance ¥, of class k has no dependence/relation to that
of the other classes.

Due to this independence property, we can estimate the true mean and covariance p,,, 3y, for each
class conditional probability distribution py(X) independently, with the n;, samples in our training
data that are classified as class k. The MLE estimate for the parameters of p;(X) is:
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1.2 LDA Classification

While QDA is a reasonable approach to classification, we might be interested in simplifying our
model to reduce the number of parameters we have to learn. One way to do this is through Lin-
ear Discriminant Analysis (LDA) classification. Just as in QDA, LDA assumes that the class
conditional probability distributions are normally distributed with different means p;,, but LDA is
different from QDA in that it requires all of the distributions to share the same covariance matrix
3.. This is a simplification which, in the context of the Bias-Variance tradeoff, increases the bias
of our method but may help decrease the variance.

The training and classification procedures for LDA are almost identical that of QDA. To com-
pute the within-class means, we still want to take the empirical mean. However, the empirical
covariance for all classes is now computed as

n

1 A A
= D (xi =y, ) (xi — )

i=1

One way to understand this formula is as a weighted average of the within-class covariances. Here,
assume we have sorted our training data by class and we can index through the x;’s by specifying
a class k£ and the index within that class j:
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1.3 LDA and QDA Decision Boundary

Let’s now derive the form of the decision boundary for QDA and LDA. As we will see, the term
quadratic in QDA and linear in LDA actually signify the shape of the decision boundary. We will
prove this claim using binary (2-class) examples for simplicity (class A and class B). An arbitrary
point x is classified according to the following cases:

A QA<X> > QB(X>
y=43B Qa(x) < @p(x)
Either Aor B Qa(x) = Qp(x)

The decision boundary is the set of all points in x-space that are classified according to the third
case.

Note 18, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 3



1.3.1 Identical Conditional Distributions with Identical Priors

The simplest case is when the two classes are equally likely in prior, and their conditional proba-
bility distributions are isotropic with identical covariances. Recall that isotropic Gaussian distribu-
tions have covariances of the form of ¥ = ¢2I, which means that their isocontours are circles. In
this case, p4(X) and pp(X) have identical covariances of the form ¥4 = Xp = oI

3 T

Figure 1: Contour plot of two isotropic, identically distributed Gaussians in R?. The circles are the level
sets of the Gaussians.

Geometrically, we can see that the task of classifying a 2-D point into one of the two classes
amounts simply to figuring out which of the means it’s closer to. Using our notation of (Qx(x)
from before, this can be expressed mathematically as:

The decision boundary is the set of points x for which ||x — fi 4|2 = ||x — ft5]|2, which is simply
the set of points that are equidistant from g1, and fi5. This decision boundary is linear because
the set of points that are equidistant from f1 4 and f15 are simply the perpendicular bisector of the
segment connecting £t 4 and fi .

The next case is when the two classes are equally likely in prior, and their conditional probability
distributions are anisotropic with identical covariances.
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Figure 2: Two anisotropic, identically distributed Gaussians in R?. The ellipses are the level sets of the
Gaussians.

The anisotropic case can be reduced to the isotropic case simply by performing a linear change of
coordinates that transforms the ellipses back into circles, which induces a linear decision boundary
both in the transformed and original space. Therefore, the decision boundary is still the set of
points that are equidistant from fi 4, and fi 5.

1.3.2 Identical Conditional Distributions with Different Priors

Now, let’s find the decision boundary when the two classes still have identical covariances but are
not necessarily equally likely in prior:

()83 (x— o) — 5 (1)
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The decision boundary is the level set of a linear function f(x) = w'x — b. In fact, the decision

boundary is the level set of a linear function (which itself is linear) as long as the two class con-
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ditional probability distributions share the same covariance matrices. This is the reason for why
LDA has a linear decision boundary.

1.3.3 Nonidentical Conditional Distributions with Different Priors

This is the most general case. We have that:

n(P(4)) ~ 3 x— o) 5 0~ o) — 3 n((8al) = In(P(B)) — 5(x — 1) 85 (x— i) — 5 (155

Here, unlike in LDA when ¥4 = X, we cannot cancel out the quadratic terms in x from both
sides of the equation, and thus our decision boundary is now represented by the level set of an
arbitrary quadratic function.

It should now make sense why QDA is short for quadratic discriminant analysis and LDA is short
for linear discriminant analysis!

1.4 LDA and Logistic Regression

As it turns out, LDA and logistic regression share the same type of posterior distribution. We
already showed that the posterior distribution in logistic regression is

1
P(Y:A’X) = W :S(WTX—b>

for some appropriate vector w and bias b. Now let’s derive the posterior distribution for LDA.
From Bayes’ rule we have that

p(xlY = A)PY = A)
(x|Y = B)P(Y = B) + p(x|Y = B)P(Y = B)
eQ@a(x)
- eRa(X) + Q@B (x)
1
T 14 e@u0-Qsx

P(Y = Ab) = -

We already showed the the decision boundary in LDA is linear — it is the set of points x such that
Qax) —Qp(x)=wx—b=0
for some appropriate vector w and bias b. We therefore have that
1
P(Y = A’X) = W = S(WTX— b)

As we can see, even though logistic regression is a discriminative method and LDA is a gener-
ative method, both methods complement each other, arriving at the same form for the posterior
distribution.
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1.5 Generalizing to Multiple Classes

The analysis on the decision boundary in QDA and LDA can be extended to the general case when
there are more than two classes. In the multiclass setting, the decision boundary is a collection
of linear boundaries in LDA and quadratic boundaries in QDA. The following Voronoi diagrams

illustrate the point:

Figure 3: LDA (left) vs QDA (right): a collection of linear vs quadratic level set boundaries. Source:
Professor Shewchuk’s
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https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
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