
CS 189 Introduction to Machine Learning
Spring 2018 Note 19
In the problem of clustering, we are given a dataset comprised only of input features without
labels. We wish to assign to each data point a discrete label indicating which “cluster” it belongs
to, in such a way that the resulting cluster assignment “fits” the data. We are given flexibility to
choose our notion of goodness of fit for cluster assignments.

Figure 1: Left: unclustered raw data; Right: clustered data

Figure 2: A nonspherical clustering assignment. Possible outliers are shown in black.1

In our discussion of LDA and QDA, we assumed that we had data which was conditionally Gaus-
sian given a discrete class label. When we observed a data point, we observed both its input
features and its class label. These are supervised learning methods, which deal with prediction
of observed outputs from observed inputs. Clustering is an example of unsupervised learning,
where we are not given labels and desire to infer something about the underlying structure of the
data. Another example of unsupervised learning is dimensionality reduction, where we desire to
learn important features from the data.

Clustering is most often used in exploratory data visualization, as it allows us to see the different
1https://www.imperva.com/blog/2017/07/clustering-and-dimensionality-reduction-understanding-the-magic-behind-machine-

learning/

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 1

groups of similar data points within the data. Combined with domain knowledge, these clusters
can have a physical interpretation - for example, different clusters can represent different species of
plant in the biological setting, or types of consumers in a business setting. If desired, these clusters
can be used as pre-processing to make the data more compact. Clustering is also used for outlier
detection, as in Figure 2: data points that do not seem to belong in their assigned cluster may be
flagged as outliers.

In order to create an algorithm for clustering, we first must determine what makes a good clustering
assignment. Here are some possible desired properties:

1. High intra-cluster similarity - points within a given cluster are very similar.

2. Low inter-cluster similarity - points in different clusters are not very similar.

Of course, this depends on our notion of similarity. For now, we will say that points in Rd are
similar if their L2 distance is small, and dissimilar otherwise. A generalization of this notion is
provided in the appendix.

1 K-means Clustering
Let X denote the set of N data points xi ∈ Rd. A cluster assignment is a partition C1, ..., CK ⊆ X
such that the sets Ck are disjoint and X = C1 ∪ · · · ∪ CK . A data point x ∈ X is said to belong to
cluster k if it is in Ck.

One approach to the clustering problem is to represent each cluster Ck by a single point ck ∈ Rd

in the input space - this is called the centroid approach. K-means is an example of centroid-
based clustering where we choose centroids and a cluster assignment such that the total distance
of each point to its assigned centroid is minimized. In this regard, K-means optimizes for high
intra-cluster similarity, but the clusters do not necessarily need to be far apart, so we may also have
high inter-cluster similarity.

Formally, K-means solves the following problem:

arg min
{Ck}Kk=1,{ck}

K
k=1

:X=C1∪···∪CK

K∑
k=1

∑
x∈Ck

‖x− ck‖2

It has been shown that this problem is NP hard, so solving it exactly is intractable. However, we
can come up with a simple algorithm to compute a candidate solution. If we knew the cluster
assignment C1, ..., CK , then we would only need to determine the centroid locations. Since the
choice of centroid location ci does not affect the distances of points in Cj to cj for i 6= j, we
can consider each cluster separately and choose the centroid that minimizes the sum of squared
distances to points in that cluster. The centroid we compute, ĉk, is

ĉk = arg min
ck

∑
x∈Ck

‖x− ck‖2

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 2

But this is simply the mean of the data in Ck, that is,

ĉk =
1

|Ck|
∑
x∈Ck

x

Similarly, if we knew the centroids ck, in order to choose the cluster assignment C1, ..., CK that
minimizes the sum of squared distances to the centroids, we simply assign each data point x to the
cluster represented by its closest centroid, that is, we assign x to

arg min
k

‖x− ck‖2

Now we can perform alternating minimization - on each iteration of our algorithm, we update the
clusters using the current centroids, and then update the centroids using the new clusters. This
algorithm is sometimes called Lloyd’s Algorithm.

Algorithm 1: K-means Algorithm
Initialize ck, k = 1, ...,K
while K-means objective has not converged do

Update partition C1 ∪ · · · ∪ CK given the ck by assigning each x ∈ X to the cluster represented
by its nearest centroid

Update centroids ck given C1 ∪ · · · ∪ CK as ck = 1
|Ck|

∑
x∈Ck

x

This algorithm will always converge to some value. To show this, note the following facts:

1. There are only finitely many (say, M) possible partition/centroid pairs that can be produced
by the algorithm. This is true since each partition chosen at some iteration in the algorithm
completely determines the subsequent centroid assignment in that iteration.

2. Each update of the cluster assignment and centroids does not increase the value of the ob-
jective. This is true since each of these updates is a minimization of the objective which we
solve exactly.

If the value of the objective has not converged after M iterations, then we have cycled through all
the possible partition/centroid pairs attainable by the algorithm. On the next iteration, we would
obtain a partition and centroid assignment that we have already seen, say on iteration t ≤ M . But
this means that the value of the objective at time M + 1 is the same as at time t, and because the
value of the objective function never increases throughout the algorithm, the value is the same as
at time M , so we have converged.

In practice, it is common to run the K-means algorithm multiple times with different initialization
points, and the cluster corresponding to the minimum objective value is chosen. There are also
ways to choose a smarter initialization than a random seed, which can improve the quality of the
local optimum found by the algorithm.2 It should be emphasized that no efficient algorithm for

2For example, K-means++.

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 3

solving the K-means optimization is guaranteed to give a good cluster assignment, as the problem
is NP hard and there are local optima.

Choosing the number of clusters k is similar to choosing the number of principal components for
PCA - we can compute the value of the objective for multiple values of k and find the “elbow” in
the curve.

We have noted that the main algorithm for solving K-means does not have to produce a good
solution. Let us step back and consider some shortcomings of the K-means objective function
itself:

1. There is no likelihood attached to K-means, which makes it harder to understand what as-
sumptions we are making on the data.

2. Each feature is treated equally, so the clusters produced by K-means will look spherical. We
can also infer this by looking at the sum of squares in the objective function, which we have
seen to be related to spherical Gaussians.

3. Each cluster assignment in the optimization is a hard assignment - each point belongs in
exactly one cluster. A soft assignment would assign each point to a distribution over the
clusters, which can encode not only which cluster a point belongs to, but also how far it was
from the other clusters.

1.1 Soft K-means
We can introduce soft assignments to our algorithm easily using the familiar softmax function.
Recall that if z ∈ Rd, then the softmax function σ is defined as

σ(z)j =
ezj∑d
k=1 e

zk

To compute the cluster assignment of a data point xi in K-means, we computed

arg min
k

‖xi − ck‖2 = arg max
k

−‖xi − ck‖2

In soft K-means, we instead compute a soft assignment ri(k), k = 1, ..., K where
∑

k ri(k) = 1 as
the softmax of the vector of z := −β‖xi − ck‖2, k = 1, ..., K:

ri(k) = σ(z)k

Here, β is a tunable parameter indicating the level of “softness” desired.

Once we have computed the soft assignments, we may use them to determine the centroids by
using a weighted average. Before, we defined the new centroids as

ĉk = arg min
ck

∑
x∈Ck

‖x− ck‖2

Now, we apply the ri(k) as weights for the minimization:

ĉk = arg min
ck

N∑
i=1

ri(k)‖xi − ck‖2 =

∑N
i=1 ri(k)xi∑N
i=1 ri(k)

(1)

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 4

This is now a weighted average of the xi - the weights reflect how much we believe each data point
belongs to a particular cluster, and because we are using this information, our algorithm should not
jump around between clusters, resulting in better convergence speed.

There are still a few issues with soft K-means. One is the choice of β - it is not so clear how
to set this hyperparameter. Another issue is that our clusters are still spherical, since we are still
weighting all features the same (note that we have weighted each data point differently with soft
K-means). To solve these issues, we will use a fully probabilistic model.

2 Mixture of Gaussians
Suppose µk ∈ Rd,Σk ∈ Rd×d are fixed parameters for k = 1, ..., K. Consider the following
experiment: draw a value z from some distribution on the set of indices {1, ..., K}, and then draw
x ∈ Rd from the Gaussian distribution N (µz,Σz). We can interpret x as belonging to cluster z.
This model is called Mixture of Gaussians (MoG), also known as a Gaussian mixture model.

If we have fit a MoG model to data (ie. we have determined values for µk, Σk, and the prior on
z), then to perform clustering, we can use Bayes’ rule to determine the posterior P (z = k|x) and
assign x to the cluster k that maximizes this quantity. In fact, this is exactly our decision rule with
QDA using a prior - the difference is that QDA, a supervised method, is given labels to fit the
mixture model, while in the unsupervised clustering setting we must fit the mixture model without
the aid of labels. When Σk are not multiples of the identity, we can obtain non-spherical clusters,
which was not possible with K-means.

MoG is an example of a latent variable model. A latent variable model is a probabilistic model in
which some variables can be directly observed or measured, while other latent (hidden) variables
cannot be observed directly; rather, we observe them indirectly through their influence on the
observed variables. When we try to fit a MoG model to data, we only observe the data xi, which
we presume to have been generated based on the latent variable zi, the cluster assignment. Latent
variable models are modular and can be used to model complex dependencies in a probabilistic
model - however, the added flexibility can lead to difficulty in learning its parameters.

To illustrate this, we will examine the likelihood function for MoG. Suppose xi has distribution
p(xi;θ), where θ is a set of all µk,Σk, p(zi = k). The likelihood for the single data point xi is

Li(θ; xi) = p(xi;θ)

=
K∑
k=1

p(xi, zi = k;θ)

=
K∑
k=1

p(xi|zi = k;θ)p(zi = k;θ)

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Over all data points, the likelihood is

L(θ; x) =
N∏
i=1

Li(θ; xi)

=
N∏
i=1

K∑
k=1

p(xi|zi = k;θ)p(zi = k;θ)

Hence the log likelihood `(θ; x) is given by

`(θ; x) =
N∑
i=1

log

 K∑
k=1

p(xi|zi = k;θ)p(zi = k;θ)

 (2)

When we perform QDA, we know the zi are known, deterministic quantities and thus the likelihood
(2) reduces to

`(θ; X) =
N∑
i=1

log p(xi|zi;θ)

Maximizing this is equivalent to fitting the individual class-conditional Gaussians via maximum
likelihood, which is consistent with how we have described QDA in the past. When we fit the
MoG without knowledge of the latent variables, the parameters θ in (2) are now coupled together
inside the log, which complicates the likelihood. While it is still possible to find the MLE by
working out the gradient and using our descent methods, there is an alternative approach called
Expectation-Maximization (EM), which takes advantage of the latent variable structure.

3 Expectation Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm is used to compute the MLE for latent variable
models, such as MoG. First recall that soft K-means consisted of the following two alternating
steps:

1. For each data point, compute a soft assignment ri(k) to the clusters - that is, a probability
distribution over clusters. The soft assignment is obtained by using a softmax.

2. Update the centroids in an optimal way given the soft assignments computed in the first step.
The resulting updates are a weighted average of the data points.

One could rephrase these updates as:

1. Soft imputation of the data - fill in the missing data (“impute”) with a probability distribution
over all its possible values (“soft”).

2. Parameter updates given the imputed data

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 6

The EM algorithm alternates between these two steps in the same way as soft K-means, but the
updates for each step are performed in a principled way to maximize certain “components” of the
log likelihood (we will make this precise later). We will derive the following updates for EM when
computing the MLE for MoG:

1. Using the current parameter estimates, estimate p(zi|xi;θ). That is, perform soft imputation
of the latent cluster variable.

2. Estimate the parameters via MLE, using the estimates of p(zi|xi;θ) to make the computation
tractable.

Both soft K-means and EM estimate p(zi|xi;θ), though EM will do so in a more principled way.
In the second alternating step, we will see that the EM update of the mean is exactly the same as
the soft K-means centroid update. However, EM will also update the covariance estimates, which
captures ellipsoidal structure in the data.

To derive the EM algorithm, it will be helpful to introduce the notion of the complete log likeli-
hood, which we define as

Lc(xi, zi;θ) := log p(xi, zi;θ)

If we assumed zi to be known, this would be the log likelihood of the data. In practice, we do
not know the values of zi, but if we are given a distribution q(zi|xi) over the latents zi, we can
marginalize over the possible values of zi by taking the expectation

Eq(Lc(xi, zi;θ)) =
K∑
k=1

Lc(xi, zi = k;θ)q(zi = k|xi)

We call this the expected complete log likelihood. The distribution q is an estimate of the true
conditional distribution p(zi|xi;θ); in the EM algorithm, we will alternate between updating our q
distribution to better estimate p(zixi;θ) and maximizing the expected complete log likelihood in
place of the true likelihood function.

We are now in a position to derive the algorithm. We will need a well-known result called Jensen’s
Inequality:

Theorem 1. If X is a random variable and f is convex, then f(E(X)) ≤ E(f(X)).

If f is concave, then using the fact −f is convex immediately yields the conclusion E(f(X)) ≤
f(E(X)). In particular, since log is concave, we have E(log(X)) ≤ log

(
E(X)

)
.

Now we can derive the EM algorithm. Suppose xi are random variables depending on zi, and θ
are the parameters of interest. Given any conditional distribution over the latents q(zi = k|xi), the
log likelihood for the i-th data point is

`i(θ; xi) = log p(xi;θ)

= log
K∑
k=1

p(xi, zi = k;θ)

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 7

= log
K∑
k=1

q(zi = k|xi)p(xi, zi = k;θ)

q(zi = k|xi)

= logEq

[
p(xi, zi;θ)

q(zi|xi)

]
≥ Eq

[
log

p(xi, zi;θ)

q(zi|xi)

]
(Jensen)

=
K∑
k=1

q(zi = k|xi) log[
p(xi, zi = k;θ)

q(zi = k|xi)
]

= −
K∑
k=1

q(zi = k|xi) log[q(zi = k|xi)] +
K∑
k=1

q(zi = k|xi) log p(xi, zi = k;θ)

=: Fi(q,θ)

We will define

H(q(zi|xi)) := −
K∑
k=1

q(zi = k|xi) log[q(zi = k|xi)]

and
Lc(xi, zi;θ) := log p(xi, zi;θ)

so that the above lower bound can be written as

Fi(q,θ) = H(q(zi|xi)) + Eq(Lc(xi, zi;θ))

The first term H(q(zi|xi)) has an information-theoretic interpretation - it is the entropy of the
distribution q(zi|xi), a non-negative quantity that measures the amount of disorder encoded in the
distribution. As mentioned earlier, the term Lc(xi, zi;θ) is called the complete log likelihood of
xi - it will be easier to optimize Eq(Lc(xi, zi;θ)) than the original log likelihood, since we will not
need to deal with the “marginalization problem” in the original log likelihood from Equation 2.

Since the log likelihood of the full data is the sum of the individual log likelihoods, we can take
sums and find

`(θ; X) ≥
N∑
i=1

Fi(q,θ) = H(q(z|X)) + Eq(Lc(X, z;θ)) =: F (q,θ) (3)

Here, X denotes the full dataset and z denotes the length N vector of latent variables. It is easy
to check that if q(zi|xi) = p(zi|xi;θ) for all i, then the inequality (3) is tight (set q(zi|xi) =
p(xi, zi; θ) in the application of Jensen’s inequality and observe both sides of the inequality are
equal). Thus it makes sense to perform an alternating maximization scheme, where we iteratively
update q(zi|xi) to p(zi|xi;θ) to make the inequality tight and then maximize over θ. Formally, the
algorithm is as follows:

1. Initialize θ0

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 8

2. Expectation (E) step (soft imputation): set qt+1 = arg max q F (q,θt), that is,

qt+1(zi = k|xi) := p(zi = k|xi;θ
t)

This value of q is used to compute Eq(Lc(X, z;θt)).

3. Maximization (M) step (parameter estimation): set

θt+1 = arg max
θ

F (qt+1,θ) = arg max
θ

Eqt+1(Lc(X, z;θ))

4. Repeat steps 2, 3 until convergence

A few remarks: when we maximize over q in the E step, there are nK values to be updated - one
value of q(zi = k|xi) for every data index i and latent index k. After the E step, qt+1 is fixed and
does not depend on θ, so the entropy term does not depend on θ and maximizing F (qt+1,θ) in
the subsequent M step amounts to maximizing the expected complete log likelihood. The E step is
what we have previously described as soft imputation of the latents: we fill in values for the hidden
variables zi by determining a conditional distribution q(zi|xi). The M step assumes the E step
has done a reasonable job at imputing the data and uses this additional information to maximize
the likelihood. Observe the connections between K-means, soft K-means, and EM - all perform
alternating steps of data imputation and subsequent parameter optimization given the imputed data.
In the data imputation step for K-means, each data point is given a hard assignment to a latent
variable value, while in soft K-means and EM, each data point gets assigned a distribution over the
latent variables.

From our derivation of EM, we can see that the value of the likelihood never decreases during
the execution of the algorithm. It turns out that EM will converge to a parameter estimate with
zero gradient, but will not necessarily find the global optimum. When the clusters are sufficiently
separated, EM can exhibit Newtonian (second-order) convergence speed - however, if the clusters
are close together, the posteriors will be very flat and EM can take longer than gradient descent
methods to converge.

3.1 EM for MoG
As a concrete example, we derive the EM updates for fitting a mixture of Gaussians. Recall the
MoG model

x|z ∼ N (µz,Σz), p(z = k) =: αk

We define the parameter set θ as the set of all µk,Σk, αk. Let x1, ...,xN ∈ Rd be our observed
data. Define qtki := qt(zi = k|xi). The EM updates, derived below, are

E step:

qt+1(zi = k|xi) =
αt
kp(xi|zi = k;θt)∑K

j=1 α
t
jp(xi|zi = j;θt)

M step:

µt+1
k =

∑N
i=1 q

t+1
ki xi∑N

i=1 q
t+1
ki

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 9

Σt+1
k =

∑N
i=1 q

t+1
ki (xi − µt+1

k)(xi − µt+1
k)T∑N

i=1 q
t+1
ki

αt+1
k =

1

N

N∑
i=1

qt+1
ki

In the E step, we assign to each xi a probability distribution over latents (that is, a soft assignment).
This assignment is p(xi|zi = k;θt), the Gaussian likelihood of the data, but reweighted by the prior
and normalized. In the M step, we are essentially computing the usual maximimum likelihood
estimates of the parameters, but weighted by the posterior on z; indeed, if we set qt+1

ki = 1
N

, then
we are using the usual MLE. The update for µk is entirely analogous to the update to the centroids
for soft k-means (1). The main difference is that now we are also updating estimates of covariances
and the prior and synthesizing this information in our posterior estimates in the E step, which will
in turn influence the µk assignments in the next E step.

We now derive these updates. Recall the log likelihood is

`(θ; x) =
N∑
i=1

log

 K∑
k=1

p(xi|zi = k;θ)p(zi = k;θ)

For the E step, we set

qt+1(zi = k|xi) = p(zi = k|xi;θ
t)

=
p(zi = k,xi;θ

t)

p(xi;θ
t)

=
p(xi|zi = k;θt)p(zi = k;θt)∑K

j=1 p(xi, zi = j;θt)

=
p(xi|zi = k;θt)p(zi = k;θt)∑K
j=1 p(xi|zi = j;θt)p(zi = j;θt)

For MoG, p(x|z = j;θt) is the pdf of N (µj,Σj) evaluated at x.

For the M step, we need to maximize the expected complete log-likelihood `q = Eqt+1(Lc(X, z;θ)).
The parameters to estimate are µk, Σk, and αk, the prior. The expected complete log likelihood is

Eqt+1(Lc(x, z;θ)) =
N∑
i=1

K∑
k=1

qt+1
ki

[
logαk −

1

2
(xi − µk)TΣ−1k (xi − µk)− 1

2
log
(

(2π)d|Σk|
)]

=
N∑
i=1

K∑
k=1

qt+1
ki

[
logαk −

1

2
(xi − µk)TΣ−1k (xi − µk) +

1

2
log
(

(2π)−d|Σ−1k |
)]

We can take gradients with respect to the parameters:

∂`q
∂µk

= Σ−1k

N∑
i=1

qt+1
ki (xi − µk)

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 10

∂`q

∂Σ−1k

=
1

2

N∑
i=1

qt+1
ki [Σk − (xi − µt+1

k)(xi − µt+1
k)T]

Setting the gradients to zero and solving these equations gives us the updates for µk,Σk shown
above. To obtain the update for αk, we need to introduce the constraint

∑K
k=1 αk = 1 via Lagrange

multipliers. We thus maximize the Lagrangian `′q = Eqt+1(Lc(x, z;θ))− λ(
∑K

k=1 αk − 1). Taking
gradients, we get

∂`′q
∂αk

= −λ+
1

αk

N∑
i=1

qt+1
ki = 0

We can rearrange to write

αkλ =
N∑
i=1

qt+1
ki

Summing over all k, we obtain

λ
K∑
k=1

αk =
K∑
k=1

N∑
i=1

qt+1
ki

=
N∑
i=1

K∑
k=1

qt+1(zi = k|xi)

=
N∑
i=1

1 = N

using the fact that qt+1 is a distribution over zi. Since
∑K

k=1 αk = 1, the left hand side reduces to
λ, so we conclude λ = N . Substituting into the original gradient, we have

∂`′q
∂αk

= −N +
1

αk

N∑
i=1

qt+1
ki

Setting this to zero gives us the desired updates for αk.

3.2 Appendix: Jensen’s Inequality Proof
Let f be convex, and X be a random variable. Construct the tangent line L(X) = aX + b to f at
E(X) for some a, b - this means L(E(X)) = f(E(X)). By convexity, L(X) ≤ f(X) for all X .3

Then by monotonicity of expectation, we have

f(E(X)) = L(E(X)) = aE(X) + b = E(aX + b) = E(L(X)) ≤ E(f(X))
3Actually, it takes some extra work to prove this intuitive fact. We will take it for granted here.

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 11

3.3 Appendix: Distance and Similarity
In our discussion of K-means, we restricted ourselves to using L2 distance as a distance func-
tion. Formally, a distance function d(x, y) is defined as a non-negative function that satisfies the
following properties:

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x) for all x, y

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z (triangle inequality)

A dissimilarity measure d(x, y) is a function satisfying the above properties except possibly the
triangle inequality. One possible similarity measure s(x, y) can be defined as −d(x, y). In clus-
tering, we are free to choose our notion of similarity. Different algorithms may or may not work
differently depending on which similarity measure we choose.

For example, it does not make sense to use the K-means algorithm if we care about L1 distances
instead of L2. However, we can apply the same principles used to derive the K-means algorithm:
if we replace the L2 norm in the objective by L1 and do a similar alternating minimization, then
on the centroid assignment step, we will set each centroid to the median of the data instead of
the mean. On the cluster assignment step, we will assign each point to the closest centroid in L1

distance. This variation is called K-medians.

Deciding which similarity measure to use is a modeling choice that typically depends on the data
and desired clustering properties. For example, K-medians may be of use if the data has outliers
and we desire a more robust estimator of the clusters. In certain domains, such as computer vision,
the Lp distances are not appropriate measures of dissimilarity, so other measures may be used.

Note 19, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 12

	K-means Clustering
	Soft K-means

	Mixture of Gaussians
	Expectation Maximization (EM) Algorithm
	EM for MoG
	Appendix: Jensen's Inequality Proof
	Appendix: Distance and Similarity

