CS 189 Introduction to Machine Learning
Spring 2018 Note 20

| Support Vector Machines

So far we’ve explored generative classifiers (LDA) and discriminative classifiers (logistic regres-
sion), but in both of these methods, we tasked ourselves with modeling some kind of probability
distribution. One observation about classification is that in the end, if we only care about assigning
each data point a class, all we really need to know do is find a “good” decision boundary, and we
can skip thinking about the distributions. Support Vector Machines (SVMs) are an attempt to
model decision boundaries directly in this spirit.

Here’s the setup for the problem. We are given a training dataset D = {(x;, y;) }™,, where x; € R¢
andy; € {—1,+1}. Our goal is to find a d— 1 dimensional hyperplane decision boundary H which
separates the +1’s from the —1’s.

1.1 Motivation for SVMs

In order to motivate SVMs, we first have to understand the simpler perceptron algorithm and its
shortcomings. Given that the training data is linearly separable, the perceptron algorithm finds
a d — 1 dimensional hyperplane that perfectly separates the +1’s from the —1’s. Mathematically,
the goal is to learn a set of parameters w € R? and b € R, that satisfy the linear separability
constraints:
_ wix; —b>0 ify, =1
Vi, .
wx, —b<0 ify;=-1

Equivalently,
Vi, yi(w'x; —b) >0

The resulting decision boundary is a hyperplane H = {x : w'x—b = 0}. All points on the positive
side of the hyperplane are classified as +1, and all points on the negative side are classified as —1.

Perceptrons have two major shortcomings that as we shall see, SVMs can overcome. First of all,
if the data is not linearly separable, the perceptron fails to find a stable solution. As we shall see,
soft-margin SVMs fix this issue by allowing best-fit decision boundaries even when the data is
not linearly separable. Second, if the data is linearly separable, the perceptron could find infinitely
many hyperplanes that the perceptron could pick — if (w, b) is a pair that separates the data points,
then the perceptron could also end up choosing a slightly different (w, b+ ¢) pair that still separates
the data points. Some hyperplanes are better than others, but the perceptron cannot distinguish
between them. This leads to generalization issues.

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 1

\
N
N
N N
N
. .
N N
N N
N
<t N < =
. \
N
N
N
v N

Figure 1: Several possible decision boundaries under the perceptron. The X’s and C’s represent the +1’s
and —1’s respectively.

In the figure above, we consider three potential linear separators that satisfy the constraints. To the
eyes of the perceptron algorithm, all three are perfectly valid linear separators. Ideally, we should
not treat all linear separators equally — some are better than others. One could imagine that if
we observed new test points that are nearby the region of C’s (or X’s) in the training data, they
should also be of class C' (or X). The two separators close to the training points would incorrectly
classify some of these new test points, while the third separator which maintains a large distance
to the points would classify them correctly. The perceptron algorithm does not take this reasoning
into account, and may find a classifier that does not generalize well to unseen data.

1.2 Hard—Margin SVMs

Hard-Margin SVMs address the generalization problem of perceptrons by maximizing the mar-
gin, formally defined as the minimum distance from the decision boundary to the training points.

Figure 2: The optimal decision boundary (as shown) maximizes the margin.

Intuitively, maximizing the margin allows us to generalize better to unseen data, because the deci-
sion boundary with the maximum margin is as far away from the training data as possible and the

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 2

boundary cannot be violated unless the unseen data contains outliers.

Simply put, the goal of hard-margin SVMs is to find a hyperplane H that maximizes the margin
m. Let’s formalize an optimization problem for hard-margin SVMs. The variables we are trying
to optimize over are the margin m and the parameters of the hyperplane, w and b. The objective is
to maximize the margin m, subject to the following constraints:

 All points classified as +1 are to the positive side of the hyperplane and their distance to /
is greater than the margin

 All points classified as —1 are to the negative side of the hyperplane and their distance to H
is greater than the margin

* The margin is non-negative.

Let’s express the first two constraints mathematically. First, note that the vector w is perpendicular
to the hyperplane H = {x : w'x — b = 0}.

w-x=0

Figure 3: Image courtesy Professor Shewchuk’s notes.

Proof: consider any two points on H, x¢ and x;. We will show that (x; — X() L w. Note that

(x1 —%0) (W) = (x; —x0) (X1 + W) = x1) =x1'W—X'W=b—b=0

Since w is perpendicular to /, the (shortest) distance from any arbitrary point z to the hyperplane
H is determined by a scaled multiple of w. If we take any point on the hyperplane x,, the distance
from z to H is the length of the projection from z — x to the vector w, which is

D |w'(z — xo)| _ |w'z — wixg _ |w'z — bl
[[wll, [[wll, [[wil,

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

Xy

Figure 4: Shortest distance from z to H is determined by projection of z — xg onto w

Therefore, the distance from any of the training points x; to H is

In order to ensure that positive points are on the positive side of the hyperplane outside a margin
of size m, and that negative points are on the negative side of the hyperplane outside a margin of
size m, we can express the constraint

Putting everything together, we have the following optimization problem:

max m
m,w,b

s.t. Yi >m Wi (D

Maximizing the margin m implies that there exists at least one point on the positive side of the
hyperplane and at least one point on the negative side whose distance to the hyperplane is exactly
equal to m. These points are the support vectors, hence the name ‘“support vector machines.”
They are called support vectors because they literally hold/support the margin planes in place.

Through a series of optimization steps, we can simplify the problem by removing the margin
variable and just optimizing the parameters of the hyperplane. Note that the current optimiza-
tion formulation does not induce a unique choice of w and b: if (m*, w*,b*) is a solution, then
(m*, aw™, ab*) is also a solution, for any o > 0. In order to ensure that w and b are unique (with-
out changing the nature of the optimization problem), we can add an additional constraint for the
norm of w: ||w||2 = «, for some o > 0. In particular, we can add the constraint ||w|, = = or

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 4

equivalently, m =

lIwll2
max m
m,w,b
T, b
st g VXD Sy
[wll, (2)
m >0
1
—
w2
Now, we can substitute m = m and eliminate m from the optimization:
1
max
wb[[wll 3)

st y(wx;—b)>1 Vi

Atlast, we have formulated the hard-margin SVM optimization problem! The standard formulation
of hard-margin SVMs is

i w2
mip Il

“4)
st y(wx; —b)>1 Vi

1.3 Soft—Margin SVMs

The hard-margin SVM optimization problem has a unique solution only if the data are linearly
separable, but it has no solution otherwise. This is because the constraints are impossible to satisfy
if we can’t draw a hyperplane that separates the +1’s from the —1’s. In addition, hard-margin
SVMs are very sensitive to outliers — for example, if our data is class-conditionally distributed
Gaussian such that the two Gaussians are far apart, if we witness an outlier from class +1 that
crosses into the typical region for class —1, then hard-margin SVM will be forced to compromise
a more generalizable fit in order to accommodate for this point. Our next goal is to come up with
a classifier that is not sensitive to outliers and can work even in the presence of data that is not
linearly separable. To this end, we’ll talk about Soft-Margin SVMs.

A soft-margin SVM modifies the constraints from the hard-margin SVM by allowing some points
to violate the margin. It introduces slack variables &;, one for each training point, into the con-
straints:

-
yi<W Xi_b) >1-¢
& >0
The constraints are now a less-strict, soffer version of the hard-margin SVM constraints, because

each point x; need only be a “distance” of 1 — &; of the separating hyperplane instead of a hard
“distance” of 1.

(By the way, the Greek letter £ is spelled “xi” and pronounced “zai.” ; is pronounced “zai-eye.”)

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 5

These constraints would be fruitless if we didn’t bound the values of the &;’s — by setting them to
large values, we are saying that any point may violate the margin by an arbitrarily large distance,
which makes our choice of w meaningless. Therefore we modify the objective function to penalize
the slacks:

W>ba7£i

N -
min §||WH + C;&

Where C'is a hyperparameter tuned through cross-validation. Putting the objective and constraints
together, the soft-margin SVM optimization problem is

I I -
$E§WN+CZ¥
o | 5)
s.t. y(wx; —b)>1-¢ Vi

&>0 Ve

The table below compares the effects of having a large C' versus a small C. As C' goes to infinity,
the penalty for having non-zero &; goes to infinity, and thus we force the &;’s to be zero, which is
exactly the setting of the hard-margin SVM.

small C large C'
Desire | maximize margin | keep &;’s small or zero
Danger underfitting overfitting
Outliers less sensitive more sensitive

1.4 SVMs as Tikhonov Regularization Learning

The constrained version of soft-margin SVM optimization problem

S SR -
$E§Wﬂ+02¥i
T = , (6)
s.t. y(wx; —b)>1-¢ Vi
&>0 Vi

can equivalently be expressed in an unconstrained fashion:

1 n
in — 1 —yi(w'x; — 1),0) + \|w|?
%gn;mw(yi(w x; — b),0) + Allwl

Let’s see why. Manipulating the first constraint of constraints, we have that
T
&> 1—y(wx; —b)
Combining with the constraint §; > 0, we have that

& > max(1 — yi(WTxi —0),0)

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 6

At the optimal value of the optimization problem, these inequalities must be tight. Otherwise, we
could lower each & to equal max(1 — y;(w'x; — b),0) and decrease the value of the objective
function. Thus we can rewrite the soft-margin SVM optimization problem as

1 n
min S[lwl>+C) &
=1

wbe 2 @)
st. & =max(1 —y(w'x; —b),0) Vi
Simplifying further, we can remove the constraints:
: - T 1 2
min C» max(1—y;(w'x; —b),0)+ §”WH (8)

i=1

If we divide by C'n (which does not change the optimal solution of the optimization problem), we
can see that this formulation is equivalent to the regularized regression problem, with A = ﬁ
Thus we have two interpretations of soft-margin SVM: either as finding a max-margin hyperplane
that is allowed to make some mistakes via slack variables &;, or as regularized empirical risk mini-
mization.

Note 20, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 7

	Support Vector Machines
	Motivation for SVMs
	Hard-Margin SVMs
	Soft-Margin SVMs
	SVMs as Tikhonov Regularization Learning

