
EECS 189 Introduction to Machine Learning
Fall 2020 Note 3

1 Feature Engineering
We’ve seen that the least-squares optimization problem

min
w
‖Xw − y‖22

represents the “best-fit” linear model, by projecting y onto the subspace spanned by the columns
of X. However, the true input-output relationship y = f (x) may be nonlinear, so it is useful to
consider nonlinear models as well. It turns out that we can still do this under the framework of
linear least-squares, by augmenting the data with new features. In particular, we devise some
function φ : R` → Rd, called a feature map, that maps each raw data point x ∈ R` into a vector of
features φ(x). The hypothesis function then writes

hw(x) =

d∑
j=1

w jφ j(x) = w>φ(x)

Note that the resulting model is still linear with respect to the features, but it is nonlinear with
respect to the original data if φ is nonlinear. The component functions φ j are sometimes called
basis functions because our hypothesis is a linear combination of them. In the simplest case, we
could just use the components of x as features (i.e. φ j(x) = x j), but in general it is helpful to
disambiguate the features of an example from the example’s entries.

We can then use least-squares to estimate the weights w, just as before. To do this, we replace the
original data matrix X ∈ Rn×` by Φ ∈ Rn×d, which has φ(xi)> as its ith row:

min
w
‖Φw − y‖22

1.1 Example: Fitting Ellipses
Let’s use least-squares to estimate the parameters of an ellipse from data.

Assume that we have n data points D = {(x1,i, x2,i)}ni=1, which may be noisy (i.e. could be off the
actual orbit). Our goal is to determine the relationship between x1 and x2.

We assume that the ellipse from which the points were generated has the form

w1x2
1 + w2x2

2 + w3x1x2 + w4x1 + w5x2 = 1

where the coefficients w1, . . . ,w5 are the parameters we wish to estimate.

We formulate the problem with least-squares:

min
w
‖Φw − 1‖22

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1

where

Φ =

x2

1,1 x2
2,1 x1,1x2,1 x1,1 x2,1

x2
1,2 x2

2,2 x1,2x2,2 x1,2 x2,2
...

...
...

...
...

...

x2
1,n x2

2,n x1,nx2,n x1,n x2,n

In this case, the feature map φ is given by

φ(x) = (x2
1, x

2
2, x1x2, x1, x2)

Note that there is no “target” vector y here, so this is not a traditional regression problem, but it
still fits into the framework of least-squares.

1.2 Polynomial Features
The example above demonstrates an important class of features known as polynomial features.
Remember that a polynomial is linear combination of monomial basis terms. Monomials can be
classified in two ways, by their degree and dimension:

Dimension
Degree

0 1 2 3 . . .

1 (univariate) 1 x x2 x3 · · ·

2 (bivariate) 1 x1, x2 x2
1, x

2
2, x1x2 x3

1, x
3
2, x

2
1x2, x1x2

2 · · ·
...

...
...

...
...

. . .

A big reason we care polynomial features is that any smooth function can be approximated arbi-
trarily closely by some polynomial.1 For this reason, polynomials are said to be universal approx-
imators.

One downside of polynomials is that as their degree increases, their number of terms increases
rapidly. Specifically, one can use a “stars and bars” style combinatorial argument2 to show that a
polynomial of degree d in ` variables has(

` + d
`

)
=

(` + d)!
`!d!

terms. To get an idea for how quickly this quantity grows, consider a few examples:
1 Taylor’s theorem gives more precise statements about the approximation error.
2 We count the number of distinct monomials of degree at most d in ` variables x1, . . . , x`, or equivalently, the number of distinct

monomials of degree exactly d in ` + 1 variables x0 = 1, x1 . . . , x`. Every monomial has the form xk0
0 . . . xk`

` where k0 + · · · + k` = d.
This corresponds to an arrangement of d stars and ` bars, where the number of stars between consecutive bars (or the ends of the
expression) gives the degree of that ordered variable. For example,

∗| ∗ ∗ ∗ | ∗ ∗ ↔ x1
0 x3

1 x2
2

The number of unique ways to arrange these stars and bars is the number of ways to choose the positions of the ` bars out of the
total ` + d slots, i.e. ` + d choose `. (You could also pick the positions of the d stars out of the total ` + d slots; the expression is
symmetric in ` and d.)

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2

`

d
1 3 5 10 25

1 2 4 6 11 26
3 4 20 56 286 3276
5 6 56 252 3003 142506

10 11 286 3003 184756 183579396
25 26 3276 142506 183579396 126410606437752

Later we will learn about the kernel trick, a clever mathematical method that allows us to circum-
vent this rapidly growing cost in certain cases.

2 Hyperparameters and Validation
As above, consider a hypothesis of the form

hw(x) =

d∑
j=1

w jφ j(x) = w>φ(x)

Observe that the model order d is not one of the decision variables being optimized when we fit to
the data. For this reason d is called a hyperparameter. We might say more specifically that it is a
model hyperparameter, since it determines the structure of the model.

For another example, recall ridge regression, in which we add an `2 penalty on the parameters w:

min
w
‖Xw − y‖22 + λ‖w‖22

The regularization weight λ is also a hyperparameter, as it is fixed during the minimization above.
However λ, unlike the previously discussed hyperparameter d, is not a part of the model. Rather,
it is an aspect of the optimization procedure used to fit the model, so we say it is an optimization
hyperparameter. Hyperparameters tend to fall into one of these two categories.

Since hyperparameters are not determined by the data-fitting optimization procedure, how should
we choose their values? A suitable answer to this question requires some discussion of the different
types of error at play.

2.1 Types of Error
We have seen that it is common to minimize some measure of how poorly our hypothesis fits the
data we have, but what we actually care about is how well the hypothesis predicts future data.
Let us try to formally distinguish the various types of error. Assume that the data are distributed
according to some (unknown) distribution D, and that we have a loss function ` : R × R → R,
which is to measure the error between the true output y and our estimate ŷ = h(x). The risk (or
true error) of a particular hypothesis h ∈ H is the expected loss over the whole data distribution:

R(h) = E(x,y)∼D[`(h(x), y)]

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Ideally, we would find the hypothesis that minimizes the risk, i.e.

h∗ = arg min
h∈H

R(h)

However, computing this expectation is impossible because we do not have access to the true data
distribution. Rather, we have access to samples (xi, yi)

iid
∼ D. These enable us to approximate the

real problem we care about by minimizing the empirical risk (or training error)

R̂train(h) =
1
n

n∑
i=1

`(h(xi), yi)

But since we have a finite number of samples, the hypothesis that performs the best on the training
data is not necessarily the best on the whole data distribution. In particular, if we both train and
evaluate the hypothesis using the same data points, the training error will be a very biased estimate
of the true error, since the hypothesis has been chosen specifically to perform well on those points.
This phenomenon is sometimes referred to as “data incest”.

A common solution is to set aside some portion (say 30%) of the data, to be called the validation
set, which is disjoint from the training set and not allowed to be used when fitting the model:

Validation Training

We can use this validation set to estimate the true error by the validation error

R̂val(h) =
1
m

m∑
i=1

`(h(xval
i), yval

i)

With this estimate, we have a simple method for choosing hyperparameter values: try a bunch of
configurations of the hyperparameters and choose the one that yields the lowest validation error.

2.2 The effect of hyperparameters on error
Note that as we add more features to a linear model, training error can only decrease. This is
because the optimizer can set wi = 0 if feature i cannot be used to reduce training error.

Model Order

Tr
ai

ni
ng

E
rr

or

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Adding more features tends to reduce true error as long as the additional features are useful pre-
dictors of the output. However, if we keep adding features, these begin to fit noise in the training
data instead of the true signal, causing true error to actually increase. This phenomenon is known
as overfitting.

Model Order

Tr
ue

E
rr

or

The validation error tracks the true error reasonably well as long as the validation set is sufficiently
large. The regularization hyperparameter λ has a somewhat different effect on training error. Ob-
serve that if λ = 0, we recover the exact OLS problem, which is directly minimizing the training
error. As λ increases, the optimizer places less emphasis on the training error and more emphasis
on reducing the magnitude of the parameters. This leads to a degradation in training error as λ
grows:

Regularization Weight

Tr
ai

ni
ng

E
rr

or

2.3 Cross-validation
Setting aside a validation set works well, but comes at a cost, since we cannot use the validation
data for training. Since having more data generally improves the quality of the trained model,
we may prefer not to let that data go to waste, especially if we have little data to begin with
and/or collecting more data is expensive. Cross-validation is an alternative to having a dedicated
validation set.

k-fold cross-validation works as follows:

1. Shuffle the data and partition it into k equally-sized (or as equal as possible) blocks.

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 5

2. For i = 1, . . . , k,

• Train the model on all the data except block i.

• Evaluate the model (i.e. compute the validation error) using block i.

1 2 3 4 5 6 · · · k

validate train

validate traintrain

validate traintrain

...

3. Average the k validation errors; this is our final estimate of the true error.

Observe that, although every datapoint is used for evaluation at some time or another, the model is
always evaluated on a different set of points than it was trained on, thereby cleverly avoiding the
“data incest” problem mentioned earlier.

Note also that this process (except for the shuffling and partitioning) must be repeated for every
hyperparameter configuration we wish to test. This is the principle drawback of k-fold cross-
validation as compared to using a held-out validation set – there is roughly k times as much com-
putation required. This is not a big deal for the relatively small linear models that we’ve seen so
far, but it can be prohibitively expensive when the model takes a long time to train, as is the case
in the Big Data regime or when using neural networks.

Note 3,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 6

	Feature Engineering
	Example: Fitting Ellipses
	Polynomial Features

	Hyperparameters and Validation
	Types of Error
	The effect of hyperparameters on error
	Cross-validation

