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1 Total Least Squares
Previously, we have covered Ordinary Least Squares (OLS) which assumes that the dependent
variable y is noisy but the independent variables x are noise-free. We now discuss Total Least
Squares (TLS), where we assume that our independent variables are also corrupted by noise. For
this reason, TLS is considered an errors-in-variables model.

1.1 A probabilistic motivation?
We might begin with a probabilistic formulation and fit the parameters via maximum likelihood
estimation, as before. Consider for simplicity a one-dimensional linear model

ytrue = wxtrue

where the observations we receive are corrupted by Gaussian noise

(x, y) = (xtrue + zx, ytrue + zy) zx, zy
iid
∼ N(0, 1)

Combining the previous two relations, we obtain

y = ytrue + zy

= wxtrue + zy

= w(x − zx) + zy

= wx−wzx + zy︸     ︷︷     ︸
∼N(0,w2+1)

The likelihood for a single point is then given by

P(x, y; w) =
1√

2π(w2 + 1)
exp

−1
2

(y − wx)2

w2 + 1


Thus the log likelihood is

log P(x, y; a) = constant −
1
2

log
(
w2 + 1

)
−

1
2

(y − wx)2

w2 + 1

Observe that the parameter w shows up in three places, unlike the form that we are familiar with,
where it only appears in the quadratic term. Our usual strategy of setting the derivative equal to
zero to find a maximizer will not yield a nice system of linear equations in this case, so we’ll try a
different approach.
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1.2 Low-rank formulation
To solve the TLS problem, we develop another formulation that can be solved using the singular
value decomposition. To motivate this formulation, recall that in OLS we attempt to minimize
‖Xw − y‖22, which is equivalent to

min
w,ε
‖ε‖22 subject to y = Xw + ε

This only accounts for errors in the dependent variable, so for TLS we introduce a second residual
εX ∈ R

n×d to account for independent variable error:

min
w,εX,εy

∥∥∥∥[εX εy
]∥∥∥∥2

f
subject to (X + εX)w = y + εy

For comparison to the OLS case, note that the Frobenius norm is essentially the same as the 2-
norm, just applied to the elements of a matrix rather than a vector.

From a probabilistic perspective, finding the most likely value of a Gaussian corresponds to min-
imizing the squared distance from the mean. Since we assume the noise is 0-centered, we want
to minimize the sum of squares of each entry in the error matrix, which corresponds exactly to
minimizing the Frobenius norm.

In order to separate out the terms being minimized, we rearrange the constraint equation as[
X + εX y + εy

]︸               ︷︷               ︸
∈Rn×(d+1)

 w
−1

 = 0

This expression tells us that the vector
[
w> −1

]
> lies in the nullspace of the matrix on the left.

However, if the matrix is full rank, its nullspace contains only 0, and thus the equation cannot
be satisfied (since the last component, −1, is always nonzero). Therefore we must choose the
perturbations εX and εy in such a way that the matrix is not full rank.

It turns out that there is a mathematical result, the Eckart-Young theorem, that can help us pick
these perturbations. This theorem essentially says that the best low-rank approximation (in terms
of the Frobenius norm1) is obtained by throwing away the smallest singular values.

Theorem. Suppose A ∈ Rm×n has rank r ≤ min(m, n), and let A = UΣV> =
∑r

i=1 σiuivi
> be its

singular value decomposition. Then

Ak =

k∑
i=1

σiuivi
> = U



σ1 · · · 0 · · · 0
...

. . . 0 · · · 0
0 0 σk · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


V>

where k ≤ r, is the best rank-k approximation to A in the sense that

‖A − Ak‖f ≤ ‖A − Ã‖f
for any Ã such that rank(Ã) ≤ k.

1 There is a more general version that holds for any unitary invariant norm.
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Let us assume that the data matrix
[
X y

]
is full rank.2 Write its singular value decomposition:

[
X y

]
=

d+1∑
i=1

σiuivi
>

Then the Eckart-Young theorem tells us that the best rank-d approximation to this matrix is

[
X + εX y + εy

]
=

d∑
i=1

σiuivi
>

which is achieved by setting [
εX εy

]
= −σd+1ud+1vd+1

>

The nullspace of our resulting matrix is then

null
([

X + εX y + εy
])

= null

 d∑
i=1

σiuivi
>

 = span{vd+1}

where the last equality holds because {v1, . . . , vd+1} form an orthogonal basis for Rd+1. To get the
weight w, we find a scaling α such that

[
w> −1

]
> is in the nullspace, i.e. w

−1

 = αvd+1

Note that this requires the (d + 1)st component of vd+1 to be nonzero. (See Section 1.3 for details.)

1.2.1 Noise, regularization, and reverse-regularization

In a sense, above we have solved the problem of total least squares by reducing it to computing
an appropriate SVD. Once we have vd+1, or any scalar multiple of it, we simply rescale it so that
the last component is −1, and then the first d components give us w. However, we can look at this
more closely to uncover the relationship between TLS and the ideas of regularization that we have
seen earlier in the course.

Since vd+1 is a right-singular vector of
[
X y

]
, it is an eigenvector of the matrix

[
X y

]
>
[
X y

]
=

X>X X>y
y>X y>y


So to find it we solve X>X X>y

y>X y>y

  w
−1

 = σ2
d+1

 w
−1


From the top line we see that w satisfies

X>Xw − X>y = σ2
d+1w

2 This should be the case in practice because the noise will cause y not to lie in the columnspace of X.
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which can be rewritten as
(X>X − σ2

d+1I)w = X>y

Thus, assuming X>X − σ2
d+1I is invertible (see the next section), we can solve for the weights as

ŵtls = (X>X − σ2
d+1I)−1X>y

This result is like ridge regression, but with a negative regularization constant!

Why does this make sense? One of the original motivations of ridge regression was to ensure that
the matrix being inverted is in fact nonsingular, and subtracting a scalar multiple of the identity
seems like a step in the opposite direction. We can make sense of this by recalling our original
model:

X = Xtrue + Z

where Xtrue are the actual values before noise corruption, and Z is a zero-mean noise term with
i.i.d. entries. Then

E[X>X] = E[(Xtrue + Z)>(Xtrue + Z)]
= E[Xtrue

>Xtrue] + E[Xtrue
>Z] + E[Z>Xtrue] + E[Z>Z]

= Xtrue
>Xtrue + Xtrue

> E[Z]︸︷︷︸
0

+E[Z]>︸︷︷︸
0

Xtrue + E[Z>Z]

= Xtrue
>Xtrue + E[Z>Z]

Observe that the off-diagonal terms of E[Z>Z] terms are zero because the ith and jth rows of Z are
independent for i , j, and the on-diagonal terms are essentially variances. Thus the −σ2

d+1I term is
there to compensate for the extra noise introduced by our assumptions regarding the independent
variables.

For another perspective, note that

E[X>] = E[(Xtrue + Z)>] = E[Xtrue
>+ Z>] = E[Xtrue

>] + E[Z>] = Xtrue
>

If we plug this into the OLS solution (where we have assumed no noise in the independent vari-
ables), we see

ŵols = (Xtrue
>Xtrue)−1Xtrue

>y = (E[X>X] − E[Z>Z])−1E[X]>y

which strongly resembles the TLS solution, but expressed in terms of expectations over the noise
Z.

So, is this all just a mathematical trick or is there a practical sense in which ridge regularization
itself is related to adding noise? The math above suggests that we can take the original training
data set and instead of working with that data set, just sample lots of points (say r times each) with
i.i.d. zero-mean Gaussian noise with variance λ added to each of their features. Call this the X and
have the corresponding y just keep the original y values. Then, doing ordinary least squares on this
noisily degraded data set will end up behaving like ridge regression since the laws of large numbers
will make 1

r X>X concentrate around Xtrue
>Xtrue +λI. Meanwhile X>y will concentrate to rXtrue

>yorig

with O(
√

r) noise on top of this by the Central Limit Theorem (if we used other-than-Gaussian
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noise to noisily resample), and straight variance-O(r) Gaussian noise if we indeed used Gaussian
noise. Putting them together means that the result of OLS with noisily augmented training data
will result in approximately the same solution as ridge-regression, with the solutions approaching
each other as the number of noisy copies r goes to infinity.

Why does this make intuitive sense? How can adding noise make learning more reliable? The
intuitive reason is that this added noise destroys inadvertent conspiracies. Overfitting happens
because the learning algorithm sees some degree of conspiracies between the observed training
labels y and the input features. By adding lots of copies of the training data with additional noise
added into them, many of these conspiracies will be masked by the added noise because they
are fundamentally sensitive to small details — this is why they manifest as large weights w. We
know from our studies of the bias/variance tradeoff that having more training samples reduces this
variance. Adding our own noisy samples exploits this variance reduction.

In many practical machine learning situations, appropriately adding noise to your training data can
be an important tool in helping generalization performance.

1.3 Existence of the solution
In the discussion above, we have in some places made assumptions to move the derivation forward.
These do not always hold, but we can provide sufficient conditions for the existence of a solution.

Proposition. Let σ1, . . . , σd+1 denote the singular values of
[
X y

]
, and σ̃1, . . . , σ̃d denote the

singular values of X. If σd+1 < σ̃d, then the total least squares problem has a solution, given by

ŵtls = (X>X − σ2
d+1I)−1X>y

Proof. Let
∑d+1

i=1 σiuivi
> be the SVD of

[
X y

]
, and suppose σd+1 < σ̃d. We first show that the

(d + 1)st component of vd+1 is nonzero. To this end, suppose towards a contradiction that vd+1 =[
a> 0

]
> for some a , 0. Since vd+1 is a right-singular vector of

[
X y

]
, i.e. an eigenvector of[

X y
]
>
[
X y

]
, we have[

X y
]
>
[
X y

] a0
 =

X>X X>y
y>X y>y

 a0
 = σ2

d+1

a0


Then
X>Xa = σ2

d+1a

i.e. a is an eigenvector of X>X with eigenvalue σ2
d+1. However, this contradicts the fact that

σ̃2
d = λmin(X>X)

since we have assumed σd+1 < σ̃d. Therefore the (d + 1)st component of vd+1 is nonzero, which
guarantees the existence of a solution.

We have already derived the given expression for ŵtls, but it remains to show that the matrix
X>X − σ2

d+1I is invertible. This is fairly immediate from the assumption that σd+1 < σ̃d, since this
implies

σ2
d+1 < σ̃

2
d = λmin(X>X)
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giving
λmin(X>X − σ2

d+1I) = λmin(X>X) − σ2
d+1 > 0

which guarantees that the matrix is invertible. �

This gives us a nice mathematical characterization of the existence of a solution, showing that the
two technical requirements we raised earlier (the last entry of vd+1 being nonzero, and the matrix
X>X − σ2

d+1 being invertible) happen together. However, is the assumption of the proof likely to
hold in practice? We give an intuitive argument that it is.

Consider that in solving the TLS problem, we have determined the error term εX. In principle, we
could use this to denoise X, as in X̂true = X− εX, and then perform OLS as normal. This process is
essentially the same as TLS if we compare the original formulations. Assuming the error is drawn
from a continuous distribution, the probability that the denoised matrix X̂true has collinear columns
is zero.

1.4 TLS minimizes perpendicular distance
Recall that OLS tries to minimize the vertical distance between the fitted line and data points.
TLS, on the other hand, tries to minimize the perpendicular distance. For this reason, TLS may
sometimes be referred to as orthogonal regression.

y = 12

The red lines represent vertical distance, which OLS aims to minimize. The blue lines represent
perpendicular distance, which TLS aims to minimize. Note that all blue lines are perpendicular to
the black line (hypothesis model), while all red lines are perpendicular to the x axis.
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