
When a golf player is first learning to play golf, they usually spend

most of their time developing a basic swing. Only gradually do they

develop other shots, learning to chip, draw and fade the ball,

building on and modifying their basic swing. In a similar way, up to

now we've focused on understanding the backpropagation

algorithm. It's our "basic swing", the foundation for learning in

most work on neural networks. In this chapter I explain a suite of

techniques which can be used to improve on our vanilla

implementation of backpropagation, and so improve the way our

networks learn.

The techniques we'll develop in this chapter include: a better choice

of cost function, known as the cross-entropy cost function; four so-

called "regularization" methods (L1 and L2 regularization, dropout,

and artificial expansion of the training data), which make our

networks better at generalizing beyond the training data; a better

method for initializing the weights in the network; and a set of

heuristics to help choose good hyper-parameters for the network.

I'll also overview several other techniques in less depth. The

discussions are largely independent of one another, and so you may

jump ahead if you wish. We'll also implement many of the

techniques in running code, and use them to improve the results

obtained on the handwriting classification problem studied in

Chapter 1.

Of course, we're only covering a few of the many, many techniques

which have been developed for use in neural nets. The philosophy is

that the best entree to the plethora of available techniques is in-

depth study of a few of the most important. Mastering those

important techniques is not just useful in its own right, but will also

deepen your understanding of what problems can arise when you

use neural networks. That will leave you well prepared to quickly

pick up other techniques, as you need them.
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The cross-entropy cost function
Most of us find it unpleasant to be wrong. Soon after beginning to

learn the piano I gave my first performance before an audience. I

was nervous, and began playing the piece an octave too low. I got

confused, and couldn't continue until someone pointed out my

error. I was very embarrassed. Yet while unpleasant, we also learn

quickly when we're decisively wrong. You can bet that the next time

I played before an audience I played in the correct octave! By

contrast, we learn more slowly when our errors are less well-

defined.

Ideally, we hope and expect that our neural networks will learn fast

from their errors. Is this what happens in practice? To answer this

question, let's look at a toy example. The example involves a neuron

with just one input:

We'll train this neuron to do something ridiculously easy: take the

input 1 to the output 0. Of course, this is such a trivial task that we

could easily figure out an appropriate weight and bias by hand,

without using a learning algorithm. However, it turns out to be

illuminating to use gradient descent to attempt to learn a weight

and bias. So let's take a look at how the neuron learns.

To make things definite, I'll pick the initial weight to be 0.6 and the

initial bias to be 0.9. These are generic choices used as a place to

begin learning, I wasn't picking them to be special in any way. The

initial output from the neuron is 0.82, so quite a bit of learning will

be needed before our neuron gets near the desired output, 0.0. Click

on "Run" in the bottom right corner below to see how the neuron

learns an output much closer to 0.0. Note that this isn't a pre-

recorded animation, your browser is actually computing the

gradient, then using the gradient to update the weight and bias, and

displaying the result. The learning rate is η = 0.15, which turns out
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to be slow enough that we can follow what's happening, but fast

enough that we can get substantial learning in just a few seconds.

The cost is the quadratic cost function, C, introduced back in

Chapter 1. I'll remind you of the exact form of the cost function

shortly, so there's no need to go and dig up the definition. Note that

you can run the animation multiple times by clicking on "Run"

again.

As you can see, the neuron rapidly learns a weight and bias that

drives down the cost, and gives an output from the neuron of about

0.09. That's not quite the desired output, 0.0, but it is pretty good.

Suppose, however, that we instead choose both the starting weight

and the starting bias to be 2.0. In this case the initial output is 0.98,

which is very badly wrong. Let's look at how the neuron learns to

output 0 in this case. Click on "Run" again:

Although this example uses the same learning rate (η = 0.15), we

can see that learning starts out much more slowly. Indeed, for the
Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



first 150 or so learning epochs, the weights and biases don't change

much at all. Then the learning kicks in and, much as in our first

example, the neuron's output rapidly moves closer to 0.0.

This behaviour is strange when contrasted to human learning. As I

said at the beginning of this section, we often learn fastest when

we're badly wrong about something. But we've just seen that our

artificial neuron has a lot of difficulty learning when it's badly

wrong - far more difficulty than when it's just a little wrong. What's

more, it turns out that this behaviour occurs not just in this toy

model, but in more general networks. Why is learning so slow? And

can we find a way of avoiding this slowdown?

To understand the origin of the problem, consider that our neuron

learns by changing the weight and bias at a rate determined by the

partial derivatives of the cost function, ∂C /∂w and ∂C /∂b. So saying

"learning is slow" is really the same as saying that those partial

derivatives are small. The challenge is to understand why they are

small. To understand that, let's compute the partial derivatives.

Recall that we're using the quadratic cost function, which, from

Equation (6), is given by

C =
(y − a)2

2
,

where a is the neuron's output when the training input x = 1 is used,

and y = 0 is the corresponding desired output. To write this more

explicitly in terms of the weight and bias, recall that a = σ(z), where

z = wx + b. Using the chain rule to differentiate with respect to the

weight and bias we get

∂C
∂w

= (a − y)σ ′ (z)x = aσ ′ (z)

∂C
∂b

= (a − y)σ ′ (z) = aσ ′ (z),

where I have substituted x = 1 and y = 0. To understand the

behaviour of these expressions, let's look more closely at the σ ′ (z)

term on the right-hand side. Recall the shape of the σ function:Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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We can see from this graph that when the neuron's output is close

to 1, the curve gets very flat, and so σ ′ (z) gets very small. Equations

(55) and (56) then tell us that ∂C /∂w and ∂C /∂b get very small. This

is the origin of the learning slowdown. What's more, as we shall see

a little later, the learning slowdown occurs for essentially the same

reason in more general neural networks, not just the toy example

we've been playing with.

Introducing the cross-entropy cost function

How can we address the learning slowdown? It turns out that we

can solve the problem by replacing the quadratic cost with a

different cost function, known as the cross-entropy. To understand

the cross-entropy, let's move a little away from our super-simple toy

model. We'll suppose instead that we're trying to train a neuron

with several input variables, x1, x2, …, corresponding weights

w1, w2, …, and a bias, b:

The output from the neuron is, of course, a = σ(z), where

z = ∑jwjxj + b is the weighted sum of the inputs. We define the

cross-entropy cost function for this neuron by

C = −
1
n
∑

x
[ylna + (1 − y)ln(1 − a)],Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



where n is the total number of items of training data, the sum is

over all training inputs, x, and y is the corresponding desired

output.

It's not obvious that the expression (57) fixes the learning slowdown

problem. In fact, frankly, it's not even obvious that it makes sense to

call this a cost function! Before addressing the learning slowdown,

let's see in what sense the cross-entropy can be interpreted as a cost

function.

Two properties in particular make it reasonable to interpret the

cross-entropy as a cost function. First, it's non-negative, that is,

C > 0. To see this, notice that: (a) all the individual terms in the

sum in (57) are negative, since both logarithms are of numbers in

the range 0 to 1; and (b) there is a minus sign out the front of the

sum.

Second, if the neuron's actual output is close to the desired output

for all training inputs, x, then the cross-entropy will be close to

zero*. To see this, suppose for example that y = 0 and a ≈ 0 for

some input x. This is a case when the neuron is doing a good job on

that input. We see that the first term in the expression (57) for the

cost vanishes, since y = 0, while the second term is just

−ln(1 − a) ≈ 0. A similar analysis holds when y = 1 and a ≈ 1. And so

the contribution to the cost will be low provided the actual output is

close to the desired output.

Summing up, the cross-entropy is positive, and tends toward zero

as the neuron gets better at computing the desired output, y, for all

training inputs, x. These are both properties we'd intuitively expect

for a cost function. Indeed, both properties are also satisfied by the

quadratic cost. So that's good news for the cross-entropy. But the

cross-entropy cost function has the benefit that, unlike the

quadratic cost, it avoids the problem of learning slowing down. To

see this, let's compute the partial derivative of the cross-entropy

cost with respect to the weights. We substitute a = σ(z) into (57),

*To prove this I will need to assume that the

desired outputs y are all either 0 or 1. This is

usually the case when solving classification

problems, for example, or when computing

Boolean functions. To understand what happens

when we don't make this assumption, see the

exercises at the end of this section.
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and apply the chain rule twice, obtaining:

∂C
∂wj

= −
1
n
∑
x

y
σ(z)

−
(1 − y)
1 − σ(z)

∂σ
∂wj

= −
1
n
∑
x

y
σ(z)

−
(1 − y)
1 − σ(z)

σ ′ (z)xj.

Putting everything over a common denominator and simplifying

this becomes:

∂C
∂wj

=
1
n
∑
x

σ ′ (z)xj
σ(z)(1 − σ(z))

(σ(z) − y).

Using the definition of the sigmoid function, σ(z) = 1/ (1 + e − z), and

a little algebra we can show that σ ′ (z) = σ(z)(1 − σ(z)). I'll ask you to

verify this in an exercise below, but for now let's accept it as given.

We see that the σ ′ (z) and σ(z)(1 − σ(z)) terms cancel in the equation

just above, and it simplifies to become:

∂C
∂wj

=
1
n
∑

x
xj(σ(z) − y).

This is a beautiful expression. It tells us that the rate at which the

weight learns is controlled by σ(z) − y, i.e., by the error in the

output. The larger the error, the faster the neuron will learn. This is

just what we'd intuitively expect. In particular, it avoids the learning

slowdown caused by the σ ′ (z) term in the analogous equation for

the quadratic cost, Equation (55). When we use the cross-entropy,

the σ ′ (z) term gets canceled out, and we no longer need worry about

it being small. This cancellation is the special miracle ensured by

the cross-entropy cost function. Actually, it's not really a miracle. As

we'll see later, the cross-entropy was specially chosen to have just

this property.

In a similar way, we can compute the partial derivative for the bias.

I won't go through all the details again, but you can easily verify

( )
( )
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that

∂C
∂b

=
1
n
∑

x
(σ(z) − y).

Again, this avoids the learning slowdown caused by the σ ′ (z) term in

the analogous equation for the quadratic cost, Equation (56).

Exercise

Verify that σ ′ (z) = σ(z)(1 − σ(z)).

Let's return to the toy example we played with earlier, and explore

what happens when we use the cross-entropy instead of the

quadratic cost. To re-orient ourselves, we'll begin with the case

where the quadratic cost did just fine, with starting weight 0.6 and

starting bias 0.9. Press "Run" to see what happens when we replace

the quadratic cost by the cross-entropy:

Unsurprisingly, the neuron learns perfectly well in this instance,

just as it did earlier. And now let's look at the case where our

neuron got stuck before (link, for comparison), with the weight and

bias both starting at 2.0:
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Success! This time the neuron learned quickly, just as we hoped. If

you observe closely you can see that the slope of the cost curve was

much steeper initially than the initial flat region on the

corresponding curve for the quadratic cost. It's that steepness which

the cross-entropy buys us, preventing us from getting stuck just

when we'd expect our neuron to learn fastest, i.e., when the neuron

starts out badly wrong.

I didn't say what learning rate was used in the examples just

illustrated. Earlier, with the quadratic cost, we used η = 0.15.

Should we have used the same learning rate in the new examples?

In fact, with the change in cost function it's not possible to say

precisely what it means to use the "same" learning rate; it's an

apples and oranges comparison. For both cost functions I simply

experimented to find a learning rate that made it possible to see

what is going on. If you're still curious, despite my disavowal, here's

the lowdown: I used η = 0.005 in the examples just given.

You might object that the change in learning rate makes the graphs

above meaningless. Who cares how fast the neuron learns, when

our choice of learning rate was arbitrary to begin with?! That

objection misses the point. The point of the graphs isn't about the

absolute speed of learning. It's about how the speed of learning

changes. In particular, when we use the quadratic cost learning is

slower when the neuron is unambiguously wrong than it is later on,

as the neuron gets closer to the correct output; while with the cross-

entropy learning is faster when the neuron is unambiguouslyLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



wrong. Those statements don't depend on how the learning rate is

set.

We've been studying the cross-entropy for a single neuron.

However, it's easy to generalize the cross-entropy to many-neuron

multi-layer networks. In particular, suppose y = y1, y2, … are the

desired values at the output neurons, i.e., the neurons in the final

layer, while aL1, a
L
2, … are the actual output values. Then we define

the cross-entropy by

C = −
1
n
∑

x
∑

j
yjlna

L
j + (1 − yj)ln(1 − aLj ) .

This is the same as our earlier expression, Equation (57), except

now we've got the ∑j summing over all the output neurons. I won't

explicitly work through a derivation, but it should be plausible that

using the expression (63) avoids a learning slowdown in many-

neuron networks. If you're interested, you can work through the

derivation in the problem below.

Incidentally, I'm using the term "cross-entropy" in a way that has

confused some early readers, since it superficially appears to

conflict with other sources. In particular, it's common to define the

cross-entropy for two probability distributions, pj and qj, as ∑jpjlnqj
. This definition may be connected to (57), if we treat a single

sigmoid neuron as outputting a probability distribution consisting

of the neuron's activation a and its complement 1 − a.

However, when we have many sigmoid neurons in the final layer,

the vector aLj  of activations don't usually form a probability

distribution. As a result, a definition like ∑jpjlnqj doesn't even make

sense, since we're not working with probability distributions.

Instead, you can think of (63) as a summed set of per-neuron cross-

entropies, with the activation of each neuron being interpreted as

part of a two-element probability distribution*. In this sense, (63) is

a generalization of the cross-entropy for probability distributions.

[ ]

*Of course, in our networks there are no

probabilistic elements, so they're not really

probabilities.
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When should we use the cross-entropy instead of the quadratic

cost? In fact, the cross-entropy is nearly always the better choice,

provided the output neurons are sigmoid neurons. To see why,

consider that when we're setting up the network we usually

initialize the weights and biases using some sort of randomization.

It may happen that those initial choices result in the network being

decisively wrong for some training input - that is, an output neuron

will have saturated near 1, when it should be 0, or vice versa. If

we're using the quadratic cost that will slow down learning. It won't

stop learning completely, since the weights will continue learning

from other training inputs, but it's obviously undesirable.

Exercises

One gotcha with the cross-entropy is that it can be difficult at

first to remember the respective roles of the ys and the as. It's

easy to get confused about whether the right form is

−[ylna + (1 − y)ln(1 − a)] or −[alny + (1 − a)ln(1 − y)]. What

happens to the second of these expressions when y = 0 or 1?

Does this problem afflict the first expression? Why or why not?

In the single-neuron discussion at the start of this section, I

argued that the cross-entropy is small if σ(z) ≈ y for all training

inputs. The argument relied on y being equal to either 0 or 1.

This is usually true in classification problems, but for other

problems (e.g., regression problems) y can sometimes take

values intermediate between 0 and 1. Show that the cross-

entropy is still minimized when σ(z) = y for all training inputs.

When this is the case the cross-entropy has the value:

C = −
1
n
∑

x
[ylny + (1 − y)ln(1 − y)].

The quantity −[ylny + (1 − y)ln(1 − y)] is sometimes known as

the binary entropy.

Problems
Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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Many-layer multi-neuron networks In the notation

introduced in the last chapter, show that for the quadratic cost

the partial derivative with respect to weights in the output layer

is

∂C

∂wL
jk

=
1
n
∑
x

aL−1k (aLj − yj)σ
′ (zLj ).

The term σ ′ (zLj ) causes a learning slowdown whenever an

output neuron saturates on the wrong value. Show that for the

cross-entropy cost the output error δL for a single training

example x is given by

δL = aL − y.

Use this expression to show that the partial derivative with

respect to the weights in the output layer is given by

∂C

∂wL
jk

=
1
n
∑
x

aL−1k (aLj − yj).

The σ ′ (zLj ) term has vanished, and so the cross-entropy avoids

the problem of learning slowdown, not just when used with a

single neuron, as we saw earlier, but also in many-layer multi-

neuron networks. A simple variation on this analysis holds also

for the biases. If this is not obvious to you, then you should

work through that analysis as well.

Using the quadratic cost when we have linear neurons

in the output layer Suppose that we have a many-layer

multi-neuron network. Suppose all the neurons in the final

layer are linear neurons, meaning that the sigmoid activation

function is not applied, and the outputs are simply aLj = zLj .

Show that if we use the quadratic cost function then the output

error δL for a single training example x is given by

δL = aL − y.

Similarly to the previous problem, use this expression to show

that the partial derivatives with respect to the weights and
Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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biases in the output layer are given by

∂C

∂wL
jk

=
1
n
∑
x

aL−1k (aLj − yj)

∂C

∂bLj
=

1
n
∑
x

(aLj − yj).

This shows that if the output neurons are linear neurons then

the quadratic cost will not give rise to any problems with a

learning slowdown. In this case the quadratic cost is, in fact, an

appropriate cost function to use.

Using the cross-entropy to classify MNIST digits

The cross-entropy is easy to implement as part of a program which

learns using gradient descent and backpropagation. We'll do that

later in the chapter, developing an improved version of our earlier

program for classifying the MNIST handwritten digits, network.py.

The new program is called network2.py, and incorporates not just the

cross-entropy, but also several other techniques developed in this

chapter*. For now, let's look at how well our new program classifies

MNIST digits. As was the case in Chapter 1, we'll use a network with

30 hidden neurons, and we'll use a mini-batch size of 10. We set the

learning rate to η = 0.5* and we train for 30 epochs. The interface to

network2.py is slightly different than network.py, but it should still be

clear what is going on. You can, by the way, get documentation

about network2.py's interface by using commands such as

help(network2.Network.SGD) in a Python shell.

>>> import mnist_loader

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.5, evaluation_data=test_data,

... monitor_evaluation_accuracy=True)

Note, by the way, that the net.large_weight_initializer() command

is used to initialize the weights and biases in the same way as

described in Chapter 1. We need to run this command because later

*The code is available on GitHub.

*In Chapter 1 we used the quadratic cost and a

learning rate of η = 3.0. As discussed above, it's

not possible to say precisely what it means to use

the "same" learning rate when the cost function

is changed. For both cost functions I

experimented to find a learning rate that

provides near-optimal performance, given the

other hyper-parameter choices.

There is, incidentally, a very rough general

heuristic for relating the learning rate for the

cross-entropy and the quadratic cost. As we saw

earlier, the gradient terms for the quadratic cost

have an extra σ ′ = σ(1 − σ) term in them.

Suppose we average this over values for σ,

∫10dσσ(1 − σ) = 1/6. We see that (very roughly) the

quadratic cost learns an average of 6 times

slower, for the same learning rate. This suggests

that a reasonable starting point is to divide the

learning rate for the quadratic cost by 6. Of

course, this argument is far from rigorous, and

shouldn't be taken too seriously. Still, it can

sometimes be a useful starting point.Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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in this chapter we'll change the default weight initialization in our

networks. The result from running the above sequence of

commands is a network with 95.49 percent accuracy. This is pretty

close to the result we obtained in Chapter 1, 95.42 percent, using the

quadratic cost.

Let's look also at the case where we use 100 hidden neurons, the

cross-entropy, and otherwise keep the parameters the same. In this

case we obtain an accuracy of 96.82 percent. That's a substantial

improvement over the results from Chapter 1, where we obtained a

classification accuracy of 96.59 percent, using the quadratic cost.

That may look like a small change, but consider that the error rate

has dropped from 3.41 percent to 3.18 percent. That is, we've

eliminated about one in fourteen of the original errors. That's quite

a handy improvement.

It's encouraging that the cross-entropy cost gives us similar or

better results than the quadratic cost. However, these results don't

conclusively prove that the cross-entropy is a better choice. The

reason is that I've put only a little effort into choosing hyper-

parameters such as learning rate, mini-batch size, and so on. For

the improvement to be really convincing we'd need to do a thorough

job optimizing such hyper-parameters. Still, the results are

encouraging, and reinforce our earlier theoretical argument that the

cross-entropy is a better choice than the quadratic cost.

This, by the way, is part of a general pattern that we'll see through

this chapter and, indeed, through much of the rest of the book.

We'll develop a new technique, we'll try it out, and we'll get

"improved" results. It is, of course, nice that we see such

improvements. But the interpretation of such improvements is

always problematic. They're only truly convincing if we see an

improvement after putting tremendous effort into optimizing all the

other hyper-parameters. That's a great deal of work, requiring lots

of computing power, and we're not usually going to do such an

exhaustive investigation. Instead, we'll proceed on the basis of

informal tests like those done above. Still, you should keep in mindLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



that such tests fall short of definitive proof, and remain alert to

signs that the arguments are breaking down.

By now, we've discussed the cross-entropy at great length. Why go

to so much effort when it gives only a small improvement to our

MNIST results? Later in the chapter we'll see other techniques -

notably, regularization - which give much bigger improvements. So

why so much focus on cross-entropy? Part of the reason is that the

cross-entropy is a widely-used cost function, and so is worth

understanding well. But the more important reason is that neuron

saturation is an important problem in neural nets, a problem we'll

return to repeatedly throughout the book. And so I've discussed the

cross-entropy at length because it's a good laboratory to begin

understanding neuron saturation and how it may be addressed.

What does the cross-entropy mean? Where
does it come from?

Our discussion of the cross-entropy has focused on algebraic

analysis and practical implementation. That's useful, but it leaves

unanswered broader conceptual questions, like: what does the

cross-entropy mean? Is there some intuitive way of thinking about

the cross-entropy? And how could we have dreamed up the cross-

entropy in the first place?

Let's begin with the last of these questions: what could have

motivated us to think up the cross-entropy in the first place?

Suppose we'd discovered the learning slowdown described earlier,

and understood that the origin was the σ ′ (z) terms in Equations

(55) and (56). After staring at those equations for a bit, we might

wonder if it's possible to choose a cost function so that the σ ′ (z)

term disappeared. In that case, the cost C = Cx for a single training

example x would satisfy

∂C
∂wj

= xj(a − y)

∂C
∂b

= (a − y).
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If we could choose the cost function to make these equations true,

then they would capture in a simple way the intuition that the

greater the initial error, the faster the neuron learns. They'd also

eliminate the problem of a learning slowdown. In fact, starting from

these equations we'll now show that it's possible to derive the form

of the cross-entropy, simply by following our mathematical noses.

To see this, note that from the chain rule we have

∂C
∂b

=
∂C
∂a

σ ′ (z).

Using σ ′ (z) = σ(z)(1 − σ(z)) = a(1 − a) the last equation becomes

∂C
∂b

=
∂C
∂a

a(1 − a).

Comparing to Equation (72) we obtain

∂C
∂a

=
a − y

a(1 − a)
.

Integrating this expression with respect to a gives

C = − [ylna + (1 − y)ln(1 − a)] + constant,

for some constant of integration. This is the contribution to the cost

from a single training example, x. To get the full cost function we

must average over training examples, obtaining

C = −
1
n
∑

x
[ylna + (1 − y)ln(1 − a)] + constant,

where the constant here is the average of the individual constants

for each training example. And so we see that Equations (71) and

(72) uniquely determine the form of the cross-entropy, up to an

overall constant term. The cross-entropy isn't something that was

miraculously pulled out of thin air. Rather, it's something that we

could have discovered in a simple and natural way.

What about the intuitive meaning of the cross-entropy? How should

we think about it? Explaining this in depth would take us further

afield than I want to go. However, it is worth mentioning that thereLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



is a standard way of interpreting the cross-entropy that comes from

the field of information theory. Roughly speaking, the idea is that

the cross-entropy is a measure of surprise. In particular, our neuron

is trying to compute the function x → y = y(x). But instead it

computes the function x → a = a(x). Suppose we think of a as our

neuron's estimated probability that y is 1, and 1 − a is the estimated

probability that the right value for y is 0. Then the cross-entropy

measures how "surprised" we are, on average, when we learn the

true value for y. We get low surprise if the output is what we expect,

and high surprise if the output is unexpected. Of course, I haven't

said exactly what "surprise" means, and so this perhaps seems like

empty verbiage. But in fact there is a precise information-theoretic

way of saying what is meant by surprise. Unfortunately, I don't

know of a good, short, self-contained discussion of this subject

that's available online. But if you want to dig deeper, then

Wikipedia contains a brief summary that will get you started down

the right track. And the details can be filled in by working through

the materials about the Kraft inequality in chapter 5 of the book

about information theory by Cover and Thomas.

Problem

We've discussed at length the learning slowdown that can occur

when output neurons saturate, in networks using the quadratic

cost to train. Another factor that may inhibit learning is the

presence of the xj term in Equation (61). Because of this term,

when an input xj is near to zero, the corresponding weight wj

will learn slowly. Explain why it is not possible to eliminate the

xj term through a clever choice of cost function.

Softmax

In this chapter we'll mostly use the cross-entropy cost to address

the problem of learning slowdown. However, I want to briefly

describe another approach to the problem, based on what are called

softmax layers of neurons. We're not actually going to use softmax

layers in the remainder of the chapter, so if you're in a great hurry,Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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you can skip to the next section. However, softmax is still worth

understanding, in part because it's intrinsically interesting, and in

part because we'll use softmax layers in Chapter 6, in our discussion

of deep neural networks.

The idea of softmax is to define a new type of output layer for our

neural networks. It begins in the same way as with a sigmoid layer,

by forming the weighted inputs* zLj = ∑kw
L
jka

L−1
k + bLj . However, we

don't apply the sigmoid function to get the output. Instead, in a

softmax layer we apply the so-called softmax function to the zLj .

According to this function, the activation aLj  of the jth output

neuron is

aLj =
ez

L
j

∑ke
zLk
,

where in the denominator we sum over all the output neurons.

If you're not familiar with the softmax function, Equation (78) may

look pretty opaque. It's certainly not obvious why we'd want to use

this function. And it's also not obvious that this will help us address

the learning slowdown problem. To better understand Equation

(78), suppose we have a network with four output neurons, and four

corresponding weighted inputs, which we'll denote zL1, z
L
2, z

L
3, and zL4.

Shown below are adjustable sliders showing possible values for the

weighted inputs, and a graph of the corresponding output

activations. A good place to start exploration is by using the bottom

slider to increase zL4:

zL1 =

2.5

aL1 =

0.315

zL2 =

-1

aL2 =

0.009

zL3 =

3.2

aL3 =

0.633

*In describing the softmax we'll make frequent

use of notation introduced in the last chapter.

You may wish to revisit that chapter if you need

to refresh your memory about the meaning of

the notation.
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zL4 =

0.5

aL4 =

0.043

As you increase zL4, you'll see an increase in the corresponding

output activation, aL4, and a decrease in the other output activations.

Similarly, if you decrease zL4 then aL4 will decrease, and all the other

output activations will increase. In fact, if you look closely, you'll see

that in both cases the total change in the other activations exactly

compensates for the change in aL4. The reason is that the output

activations are guaranteed to always sum up to 1, as we can prove

using Equation (78) and a little algebra:

∑
j
aLj =

∑je
zLj

∑ke
zLk

= 1.

As a result, if aL4 increases, then the other output activations must

decrease by the same total amount, to ensure the sum over all

activations remains 1. And, of course, similar statements hold for all

the other activations.

Equation (78) also implies that the output activations are all

positive, since the exponential function is positive. Combining this

with the observation in the last paragraph, we see that the output

from the softmax layer is a set of positive numbers which sum up to

1. In other words, the output from the softmax layer can be thought

of as a probability distribution.

The fact that a softmax layer outputs a probability distribution is

rather pleasing. In many problems it's convenient to be able to

interpret the output activation aLj  as the network's estimate of the

probability that the correct output is j. So, for instance, in the

MNIST classification problem, we can interpret aLj  as the network's

estimated probability that the correct digit classification is j.

By contrast, if the output layer was a sigmoid layer, then we

certainly couldn't assume that the activations formed a probability

distribution. I won't explicitly prove it, but it should be plausible
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that the activations from a sigmoid layer won't in general form a

probability distribution. And so with a sigmoid output layer we

don't have such a simple interpretation of the output activations.

Exercise

Construct an example showing explicitly that in a network with

a sigmoid output layer, the output activations aLj  won't always

sum to 1.

We're starting to build up some feel for the softmax function and

the way softmax layers behave. Just to review where we're at: the

exponentials in Equation (78) ensure that all the output activations

are positive. And the sum in the denominator of Equation (78)

ensures that the softmax outputs sum to 1. So that particular form

no longer appears so mysterious: rather, it is a natural way to

ensure that the output activations form a probability distribution.

You can think of softmax as a way of rescaling the zLj , and then

squishing them together to form a probability distribution.

Exercises

Monotonicity of softmax Show that ∂aLj /∂z
L
k  is positive if

j = k and negative if j ≠ k. As a consequence, increasing zLj  is

guaranteed to increase the corresponding output activation, aLj ,

and will decrease all the other output activations. We already

saw this empirically with the sliders, but this is a rigorous

proof.

Non-locality of softmax A nice thing about sigmoid layers is

that the output aLj  is a function of the corresponding weighted

input, aLj = σ(zLj ). Explain why this is not the case for a softmax

layer: any particular output activation aLj  depends on all the

weighted inputs.

Problem
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Inverting the softmax layer Suppose we have a neural

network with a softmax output layer, and the activations aLj  are

known. Show that the corresponding weighted inputs have the

form zLj = lnaLj + C, for some constant C that is independent of j

.

The learning slowdown problem: We've now built up

considerable familiarity with softmax layers of neurons. But we

haven't yet seen how a softmax layer lets us address the learning

slowdown problem. To understand that, let's define the log-

likelihood cost function. We'll use x to denote a training input to the

network, and y to denote the corresponding desired output. Then

the log-likelihood cost associated to this training input is

C ≡ − lnaLy .

So, for instance, if we're training with MNIST images, and input an

image of a 7, then the log-likelihood cost is −lnaL7. To see that this

makes intuitive sense, consider the case when the network is doing

a good job, that is, it is confident the input is a 7. In that case it will

estimate a value for the corresponding probability aL7 which is close

to 1, and so the cost −lnaL7 will be small. By contrast, when the

network isn't doing such a good job, the probability aL7 will be

smaller, and the cost −lnaL7 will be larger. So the log-likelihood cost

behaves as we'd expect a cost function to behave.

What about the learning slowdown problem? To analyze that, recall

that the key to the learning slowdown is the behaviour of the

quantities ∂C /∂wL
jk and ∂C /∂bLj . I won't go through the derivation

explicitly - I'll ask you to do in the problems, below - but with a little

algebra you can show that*

∂C

∂bLj
= aLj − yj

∂C

∂wL
jk

= aL−1k (aLj − yj)

These equations are the same as the analogous expressions

*Note that I'm abusing notation here, using y in

a slightly different way to last paragraph. In the

last paragraph we used y to denote the desired

output from the network - e.g., output a "7" if an

image of a 7 was input. But in the equations

which follow I'm using y to denote the vector of

output activations which corresponds to 7, that

is, a vector which is all 0s, except for a 1 in the 7

th location.
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obtained in our earlier analysis of the cross-entropy. Compare, for

example, Equation (82) to Equation (67). It's the same equation,

albeit in the latter I've averaged over training instances. And, just as

in the earlier analysis, these expressions ensure that we will not

encounter a learning slowdown. In fact, it's useful to think of a

softmax output layer with log-likelihood cost as being quite similar

to a sigmoid output layer with cross-entropy cost.

Given this similarity, should you use a sigmoid output layer and

cross-entropy, or a softmax output layer and log-likelihood? In fact,

in many situations both approaches work well. Through the

remainder of this chapter we'll use a sigmoid output layer, with the

cross-entropy cost. Later, in Chapter 6, we'll sometimes use a

softmax output layer, with log-likelihood cost. The reason for the

switch is to make some of our later networks more similar to

networks found in certain influential academic papers. As a more

general point of principle, softmax plus log-likelihood is worth

using whenever you want to interpret the output activations as

probabilities. That's not always a concern, but can be useful with

classification problems (like MNIST) involving disjoint classes.

Problems

Derive Equations (81) and (82).

Where does the "softmax" name come from? Suppose

we change the softmax function so the output activations are

given by

aLj =
ecz

L
j

∑ke
czLk

,

where c is a positive constant. Note that c = 1 corresponds to

the standard softmax function. But if we use a different value of

c we get a different function, which is nonetheless qualitatively

rather similar to the softmax. In particular, show that the

output activations form a probability distribution, just as for

the usual softmax. Suppose we allow c to become large, i.e.,Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
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c → ∞. What is the limiting value for the output activations aLj ?

After solving this problem it should be clear to you why we

think of the c = 1 function as a "softened" version of the

maximum function. This is the origin of the term "softmax".

Backpropagation with softmax and the log-likelihood

cost In the last chapter we derived the backpropagation

algorithm for a network containing sigmoid layers. To apply

the algorithm to a network with a softmax layer we need to

figure out an expression for the error δLj ≡ ∂C /∂zLj  in the final

layer. Show that a suitable expression is:

δLj = aLj − yj.

Using this expression we can apply the backpropagation

algorithm to a network using a softmax output layer and the

log-likelihood cost.

Overfitting and regularization
The Nobel prizewinning physicist Enrico Fermi was once asked his

opinion of a mathematical model some colleagues had proposed as

the solution to an important unsolved physics problem. The model

gave excellent agreement with experiment, but Fermi was skeptical.

He asked how many free parameters could be set in the model.

"Four" was the answer. Fermi replied*: "I remember my friend

Johnny von Neumann used to say, with four parameters I can fit an

elephant, and with five I can make him wiggle his trunk.".

The point, of course, is that models with a large number of free

parameters can describe an amazingly wide range of phenomena.

Even if such a model agrees well with the available data, that

doesn't make it a good model. It may just mean there's enough

freedom in the model that it can describe almost any data set of the

given size, without capturing any genuine insights into the

underlying phenomenon. When that happens the model will work

well for the existing data, but will fail to generalize to new

*The quote comes from a charming article by

Freeman Dyson, who is one of the people who

proposed the flawed model. A four-parameter

elephant may be found here.
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situations. The true test of a model is its ability to make predictions

in situations it hasn't been exposed to before.

Fermi and von Neumann were suspicious of models with four

parameters. Our 30 hidden neuron network for classifying MNIST

digits has nearly 24,000 parameters! That's a lot of parameters. Our

100 hidden neuron network has nearly 80,000 parameters, and

state-of-the-art deep neural nets sometimes contain millions or

even billions of parameters. Should we trust the results?

Let's sharpen this problem up by constructing a situation where our

network does a bad job generalizing to new situations. We'll use our

30 hidden neuron network, with its 23,860 parameters. But we

won't train the network using all 50,000 MNIST training images.

Instead, we'll use just the first 1,000 training images. Using that

restricted set will make the problem with generalization much more

evident. We'll train in a similar way to before, using the cross-

entropy cost function, with a learning rate of η = 0.5 and a mini-

batch size of 10. However, we'll train for 400 epochs, a somewhat

larger number than before, because we're not using as many

training examples. Let's use network2 to look at the way the cost

function changes:

 

>>> import mnist_loader 

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2 

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost) 

>>> net.large_weight_initializer()

>>> net.SGD(training_data[:1000], 400, 10, 0.5, evaluation_data=test_data,

... monitor_evaluation_accuracy=True, monitor_training_cost=True)

Using the results we can plot the way the cost changes as the

network learns* : *This and the next four graphs were generated

by the program overfitting.py.
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This looks encouraging, showing a smooth decrease in the cost, just

as we expect. Note that I've only shown training epochs 200

through 399. This gives us a nice up-close view of the later stages of

learning, which, as we'll see, turns out to be where the interesting

action is.

Let's now look at how the classification accuracy on the test data

changes over time:

Again, I've zoomed in quite a bit. In the first 200 epochs (not

shown) the accuracy rises to just under 82 percent. The learning

then gradually slows down. Finally, at around epoch 280 theLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



classification accuracy pretty much stops improving. Later epochs

merely see small stochastic fluctuations near the value of the

accuracy at epoch 280. Contrast this with the earlier graph, where

the cost associated to the training data continues to smoothly drop.

If we just look at that cost, it appears that our model is still getting

"better". But the test accuracy results show the improvement is an

illusion. Just like the model that Fermi disliked, what our network

learns after epoch 280 no longer generalizes to the test data. And so

it's not useful learning. We say the network is overfitting or

overtraining beyond epoch 280.

You might wonder if the problem here is that I'm looking at the cost

on the training data, as opposed to the classification accuracy on

the test data. In other words, maybe the problem is that we're

making an apples and oranges comparison. What would happen if

we compared the cost on the training data with the cost on the test

data, so we're comparing similar measures? Or perhaps we could

compare the classification accuracy on both the training data and

the test data? In fact, essentially the same phenomenon shows up

no matter how we do the comparison. The details do change,

however. For instance, let's look at the cost on the test data:

We can see that the cost on the test data improves until around

epoch 15, but after that it actually starts to get worse, even thoughLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



the cost on the training data is continuing to get better. This is

another sign that our model is overfitting. It poses a puzzle, though,

which is whether we should regard epoch 15 or epoch 280 as the

point at which overfitting is coming to dominate learning? From a

practical point of view, what we really care about is improving

classification accuracy on the test data, while the cost on the test

data is no more than a proxy for classification accuracy. And so it

makes most sense to regard epoch 280 as the point beyond which

overfitting is dominating learning in our neural network.

Another sign of overfitting may be seen in the classification

accuracy on the training data:

The accuracy rises all the way up to 100 percent. That is, our

network correctly classifies all 1, 000 training images! Meanwhile,

our test accuracy tops out at just 82.27 percent. So our network

really is learning about peculiarities of the training set, not just

recognizing digits in general. It's almost as though our network is

merely memorizing the training set, without understanding digits

well enough to generalize to the test set.

Overfitting is a major problem in neural networks. This is especially

true in modern networks, which often have very large numbers of

weights and biases. To train effectively, we need a way of detecting
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when overfitting is going on, so we don't overtrain. And we'd like to

have techniques for reducing the effects of overfitting.

The obvious way to detect overfitting is to use the approach above,

keeping track of accuracy on the test data as our network trains. If

we see that the accuracy on the test data is no longer improving,

then we should stop training. Of course, strictly speaking, this is not

necessarily a sign of overfitting. It might be that accuracy on the

test data and the training data both stop improving at the same

time. Still, adopting this strategy will prevent overfitting.

In fact, we'll use a variation on this strategy. Recall that when we

load in the MNIST data we load in three data sets:

 

>>> import mnist_loader 

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

Up to now we've been using the training_data and test_data, and

ignoring the validation_data. The validation_data contains 10, 000

images of digits, images which are different from the 50, 000 images

in the MNIST training set, and the 10, 000 images in the MNIST test

set. Instead of using the test_data to prevent overfitting, we will use

the validation_data. To do this, we'll use much the same strategy as

was described above for the test_data. That is, we'll compute the

classification accuracy on the validation_data at the end of each

epoch. Once the classification accuracy on the validation_data has

saturated, we stop training. This strategy is called early stopping.

Of course, in practice we won't immediately know when the

accuracy has saturated. Instead, we continue training until we're

confident that the accuracy has saturated*.

Why use the validation_data to prevent overfitting, rather than the

test_data? In fact, this is part of a more general strategy, which is to

use the validation_data to evaluate different trial choices of hyper-

parameters such as the number of epochs to train for, the learning

rate, the best network architecture, and so on. We use such

evaluations to find and set good values for the hyper-parameters.

Indeed, although I haven't mentioned it until now, that is, in part,

*It requires some judgment to determine when

to stop. In my earlier graphs I identified epoch

280 as the place at which accuracy saturated. It's

possible that was too pessimistic. Neural

networks sometimes plateau for a while in

training, before continuing to improve. I

wouldn't be surprised if more learning could

have occurred even after epoch 400, although

the magnitude of any further improvement

would likely be small. So it's possible to adopt

more or less aggressive strategies for early

stopping.
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how I arrived at the hyper-parameter choices made earlier in this

book. (More on this later.)

Of course, that doesn't in any way answer the question of why we're

using the validation_data to prevent overfitting, rather than the

test_data. Instead, it replaces it with a more general question, which

is why we're using the validation_data rather than the test_data to

set good hyper-parameters? To understand why, consider that

when setting hyper-parameters we're likely to try many different

choices for the hyper-parameters. If we set the hyper-parameters

based on evaluations of the test_data it's possible we'll end up

overfitting our hyper-parameters to the test_data. That is, we may

end up finding hyper-parameters which fit particular peculiarities

of the test_data, but where the performance of the network won't

generalize to other data sets. We guard against that by figuring out

the hyper-parameters using the validation_data. Then, once we've

got the hyper-parameters we want, we do a final evaluation of

accuracy using the test_data. That gives us confidence that our

results on the test_data are a true measure of how well our neural

network generalizes. To put it another way, you can think of the

validation data as a type of training data that helps us learn good

hyper-parameters. This approach to finding good hyper-parameters

is sometimes known as the hold out method, since the

validation_data is kept apart or "held out" from the training_data.

Now, in practice, even after evaluating performance on the

test_data we may change our minds and want to try another

approach - perhaps a different network architecture - which will

involve finding a new set of hyper-parameters. If we do this, isn't

there a danger we'll end up overfitting to the test_data as well? Do

we need a potentially infinite regress of data sets, so we can be

confident our results will generalize? Addressing this concern fully

is a deep and difficult problem. But for our practical purposes, we're

not going to worry too much about this question. Instead, we'll

plunge ahead, using the basic hold out method, based on the

training_data, validation_data, and test_data, as described above.
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We've been looking so far at overfitting when we're just using 1,000

training images. What happens when we use the full training set of

50,000 images? We'll keep all the other parameters the same (30

hidden neurons, learning rate 0.5, mini-batch size of 10), but train

using all 50,000 images for 30 epochs. Here's a graph showing the

results for the classification accuracy on both the training data and

the test data. Note that I've used the test data here, rather than the

validation data, in order to make the results more directly

comparable with the earlier graphs.

As you can see, the accuracy on the test and training data remain

much closer together than when we were using 1,000 training

examples. In particular, the best classification accuracy of 97.86

percent on the training data is only 2.53 percent higher than the

95.33 percent on the test data. That's compared to the 17.73 percent

gap we had earlier! Overfitting is still going on, but it's been greatly

reduced. Our network is generalizing much better from the training

data to the test data. In general, one of the best ways of reducing

overfitting is to increase the size of the training data. With enough

training data it is difficult for even a very large network to overfit.

Unfortunately, training data can be expensive or difficult to acquire,

so this is not always a practical option.
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Increasing the amount of training data is one way of reducing

overfitting. Are there other ways we can reduce the extent to which

overfitting occurs? One possible approach is to reduce the size of

our network. However, large networks have the potential to be

more powerful than small networks, and so this is an option we'd

only adopt reluctantly.

Fortunately, there are other techniques which can reduce

overfitting, even when we have a fixed network and fixed training

data. These are known as regularization techniques. In this section

I describe one of the most commonly used regularization

techniques, a technique sometimes known as weight decay or L2

regularization. The idea of L2 regularization is to add an extra term

to the cost function, a term called the regularization term. Here's

the regularized cross-entropy:

C = −
1
n
∑
xj

yjlna
L
j + (1 − yj)ln(1 − aLj ) +

λ
2n
∑
w
w2.

The first term is just the usual expression for the cross-entropy. But

we've added a second term, namely the sum of the squares of all the

weights in the network. This is scaled by a factor λ /2n, where λ > 0

is known as the regularization parameter, and n is, as usual, the

size of our training set. I'll discuss later how λ is chosen. It's also

worth noting that the regularization term doesn't include the biases.

I'll also come back to that below.

Of course, it's possible to regularize other cost functions, such as the

quadratic cost. This can be done in a similar way:

C =
1
2n
∑

x
‖y − aL‖2 +

λ
2n
∑
w
w2.

In both cases we can write the regularized cost function as

C = C0 +
λ
2n
∑
w
w2,

where C0 is the original, unregularized cost function.

[ ]
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Intuitively, the effect of regularization is to make it so the network

prefers to learn small weights, all other things being equal. Large

weights will only be allowed if they considerably improve the first

part of the cost function. Put another way, regularization can be

viewed as a way of compromising between finding small weights

and minimizing the original cost function. The relative importance

of the two elements of the compromise depends on the value of λ:

when λ is small we prefer to minimize the original cost function, but

when λ is large we prefer small weights.

Now, it's really not at all obvious why making this kind of

compromise should help reduce overfitting! But it turns out that it

does. We'll address the question of why it helps in the next section.

But first, let's work through an example showing that regularization

really does reduce overfitting.

To construct such an example, we first need to figure out how to

apply our stochastic gradient descent learning algorithm in a

regularized neural network. In particular, we need to know how to

compute the partial derivatives ∂C /∂w and ∂C /∂b for all the weights

and biases in the network. Taking the partial derivatives of

Equation (87) gives

∂C
∂w

=
∂C0

∂w
+
λ
n
w

∂C
∂b

=
∂C0

∂b
.

The ∂C0 /∂w and ∂C0 /∂b terms can be computed using

backpropagation, as described in the last chapter. And so we see

that it's easy to compute the gradient of the regularized cost

function: just use backpropagation, as usual, and then add 
λ
nw to

the partial derivative of all the weight terms. The partial derivatives

with respect to the biases are unchanged, and so the gradient

descent learning rule for the biases doesn't change from the usual

rule:
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b → b − η
∂C0

∂b
.

The learning rule for the weights becomes:

w → w − η
∂C0

∂w
−
ηλ
n
w

= 1 −
ηλ
n

w − η
∂C0

∂w
.

This is exactly the same as the usual gradient descent learning rule,

except we first rescale the weight w by a factor 1 −
ηλ
n . This rescaling

is sometimes referred to as weight decay, since it makes the

weights smaller. At first glance it looks as though this means the

weights are being driven unstoppably toward zero. But that's not

right, since the other term may lead the weights to increase, if so

doing causes a decrease in the unregularized cost function.

Okay, that's how gradient descent works. What about stochastic

gradient descent? Well, just as in unregularized stochastic gradient

descent, we can estimate ∂C0 /∂w by averaging over a mini-batch of

m training examples. Thus the regularized learning rule for

stochastic gradient descent becomes (c.f. Equation (20))

w → 1 −
ηλ
n

w −
η
m
∑

x

∂Cx

∂w
,

where the sum is over training examples x in the mini-batch, and Cx

is the (unregularized) cost for each training example. This is exactly

the same as the usual rule for stochastic gradient descent, except for

the 1 −
ηλ
n  weight decay factor. Finally, and for completeness, let me

state the regularized learning rule for the biases. This is, of course,

exactly the same as in the unregularized case (c.f. Equation (21)),

b → b −
η
m
∑

x

∂Cx

∂b
,

where the sum is over training examples x in the mini-batch.

( )

( )
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Let's see how regularization changes the performance of our neural

network. We'll use a network with 30 hidden neurons, a mini-batch

size of 10, a learning rate of 0.5, and the cross-entropy cost function.

However, this time we'll use a regularization parameter of λ = 0.1.

Note that in the code, we use the variable name lmbda, because

lambda is a reserved word in Python, with an unrelated meaning. I've

also used the test_data again, not the validation_data. Strictly

speaking, we should use the validation_data, for all the reasons we

discussed earlier. But I decided to use the test_data because it

makes the results more directly comparable with our earlier,

unregularized results. You can easily change the code to use the

validation_data instead, and you'll find that it gives similar results.

 

>>> import mnist_loader 

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper() 

>>> import network2 

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data[:1000], 400, 10, 0.5,

... evaluation_data=test_data, lmbda = 0.1,

... monitor_evaluation_cost=True, monitor_evaluation_accuracy=True,

... monitor_training_cost=True, monitor_training_accuracy=True)

The cost on the training data decreases over the whole time, much

as it did in the earlier, unregularized case*:

But this time the accuracy on the test_data continues to increase for

the entire 400 epochs:

*This and the next two graphs were produced

with the program overfitting.py.
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Clearly, the use of regularization has suppressed overfitting. What's

more, the accuracy is considerably higher, with a peak classification

accuracy of 87.1 percent, compared to the peak of 82.27 percent

obtained in the unregularized case. Indeed, we could almost

certainly get considerably better results by continuing to train past

400 epochs. It seems that, empirically, regularization is causing our

network to generalize better, and considerably reducing the effects

of overfitting.

What happens if we move out of the artificial environment of just

having 1,000 training images, and return to the full 50,000 image

training set? Of course, we've seen already that overfitting is much

less of a problem with the full 50,000 images. Does regularization

help any further? Let's keep the hyper-parameters the same as

before - 30 epochs, learning rate 0.5, mini-batch size of 10. However,

we need to modify the regularization parameter. The reason is

because the size n of the training set has changed from n = 1, 000 to

n = 50, 000, and this changes the weight decay factor 1 −
ηλ

n
. If we

continued to use λ = 0.1 that would mean much less weight decay,

and thus much less of a regularization effect. We compensate by

changing to λ = 5.0.

Okay, let's train our network, stopping first to re-initialize the
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>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.5,

... evaluation_data=test_data, lmbda = 5.0,

... monitor_evaluation_accuracy=True, monitor_training_accuracy=True)

We obtain the results:

There's lots of good news here. First, our classification accuracy on

the test data is up, from 95.49 percent when running unregularized,

to 96.49 percent. That's a big improvement. Second, we can see that

the gap between results on the training and test data is much

narrower than before, running at under a percent. That's still a

significant gap, but we've obviously made substantial progress

reducing overfitting.

Finally, let's see what test classification accuracy we get when we

use 100 hidden neurons and a regularization parameter of λ = 5.0. I

won't go through a detailed analysis of overfitting here, this is

purely for fun, just to see how high an accuracy we can get when we

use our new tricks: the cross-entropy cost function and L2

regularization.

 

>>> net = network2.Network([784, 100, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.5, lmbda=5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True)
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The final result is a classification accuracy of 97.92 percent on the

validation data. That's a big jump from the 30 hidden neuron case.

In fact, tuning just a little more, to run for 60 epochs at η = 0.1 and

λ = 5.0 we break the 98 percent barrier, achieving 98.04 percent

classification accuracy on the validation data. Not bad for what

turns out to be 152 lines of code!

I've described regularization as a way to reduce overfitting and to

increase classification accuracies. In fact, that's not the only benefit.

Empirically, when doing multiple runs of our MNIST networks, but

with different (random) weight initializations, I've found that the

unregularized runs will occasionally get "stuck", apparently caught

in local minima of the cost function. The result is that different runs

sometimes provide quite different results. By contrast, the

regularized runs have provided much more easily replicable results.

Why is this going on? Heuristically, if the cost function is

unregularized, then the length of the weight vector is likely to grow,

all other things being equal. Over time this can lead to the weight

vector being very large indeed. This can cause the weight vector to

get stuck pointing in more or less the same direction, since changes

due to gradient descent only make tiny changes to the direction,

when the length is long. I believe this phenomenon is making it

hard for our learning algorithm to properly explore the weight

space, and consequently harder to find good minima of the cost

function.

Why does regularization help reduce
overfitting?

We've seen empirically that regularization helps reduce overfitting.

That's encouraging but, unfortunately, it's not obvious why

regularization helps! A standard story people tell to explain what's

going on is along the following lines: smaller weights are, in some

sense, lower complexity, and so provide a simpler and more

powerful explanation for the data, and should thus be preferred.

That's a pretty terse story, though, and contains several elements

that perhaps seem dubious or mystifying. Let's unpack the story
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and examine it critically. To do that, let's suppose we have a simple

data set for which we wish to build a model:

0 1 2 3 4 5

x
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1
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3

4

5
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7

8

9

10

y

Implicitly, we're studying some real-world phenomenon here, with

x and y representing real-world data. Our goal is to build a model

which lets us predict y as a function of x. We could try using neural

networks to build such a model, but I'm going to do something even

simpler: I'll try to model y as a polynomial in x. I'm doing this

instead of using neural nets because using polynomials will make

things particularly transparent. Once we've understood the

polynomial case, we'll translate to neural networks. Now, there are

ten points in the graph above, which means we can find a unique 9

th-order polynomial y = a0x
9 + a1x

8 + … + a9 which fits the data

exactly. Here's the graph of that polynomial*:
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*I won't show the coefficients explicitly, although

they are easy to find using a routine such as

Numpy's polyfit. You can view the exact form

of the polynomial in the source code for the

graph if you're curious. It's the function p(x)

defined starting on line 14 of the program which

produces the graph.
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That provides an exact fit. But we can also get a good fit using the

linear model y = 2x:
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Which of these is the better model? Which is more likely to be true?

And which model is more likely to generalize well to other examples

of the same underlying real-world phenomenon?

These are difficult questions. In fact, we can't determine with

certainty the answer to any of the above questions, without much

more information about the underlying real-world phenomenon.

But let's consider two possibilities: (1) the 9th order polynomial is,

in fact, the model which truly describes the real-world

phenomenon, and the model will therefore generalize perfectly; (2)

the correct model is y = 2x, but there's a little additional noise due

to, say, measurement error, and that's why the model isn't an exact

fit.

It's not a priori possible to say which of these two possibilities is

correct. (Or, indeed, if some third possibility holds). Logically,

either could be true. And it's not a trivial difference. It's true that on

the data provided there's only a small difference between the two

models. But suppose we want to predict the value of y

corresponding to some large value of x, much larger than any shown

on the graph above. If we try to do that there will be a dramatic

difference between the predictions of the two models, as the 9th
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order polynomial model comes to be dominated by the x9 term,

while the linear model remains, well, linear.

One point of view is to say that in science we should go with the

simpler explanation, unless compelled not to. When we find a

simple model that seems to explain many data points we are

tempted to shout "Eureka!" After all, it seems unlikely that a simple

explanation should occur merely by coincidence. Rather, we suspect

that the model must be expressing some underlying truth about the

phenomenon. In the case at hand, the model y = 2x + noise seems

much simpler than y = a0x
9 + a1x

8 + …. It would be surprising if

that simplicity had occurred by chance, and so we suspect that

y = 2x + noise expresses some underlying truth. In this point of

view, the 9th order model is really just learning the effects of local

noise. And so while the 9th order model works perfectly for these

particular data points, the model will fail to generalize to other data

points, and the noisy linear model will have greater predictive

power.

Let's see what this point of view means for neural networks.

Suppose our network mostly has small weights, as will tend to

happen in a regularized network. The smallness of the weights

means that the behaviour of the network won't change too much if

we change a few random inputs here and there. That makes it

difficult for a regularized network to learn the effects of local noise

in the data. Think of it as a way of making it so single pieces of

evidence don't matter too much to the output of the network.

Instead, a regularized network learns to respond to types of

evidence which are seen often across the training set. By contrast, a

network with large weights may change its behaviour quite a bit in

response to small changes in the input. And so an unregularized

network can use large weights to learn a complex model that carries

a lot of information about the noise in the training data. In a

nutshell, regularized networks are constrained to build relatively

simple models based on patterns seen often in the training data,

and are resistant to learning peculiarities of the noise in the training

data. The hope is that this will force our networks to do real
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learning about the phenomenon at hand, and to generalize better

from what they learn.

With that said, this idea of preferring simpler explanation should

make you nervous. People sometimes refer to this idea as "Occam's

Razor", and will zealously apply it as though it has the status of

some general scientific principle. But, of course, it's not a general

scientific principle. There is no a priori logical reason to prefer

simple explanations over more complex explanations. Indeed,

sometimes the more complex explanation turns out to be correct.

Let me describe two examples where more complex explanations

have turned out to be correct. In the 1940s the physicist Marcel

Schein announced the discovery of a new particle of nature. The

company he worked for, General Electric, was ecstatic, and

publicized the discovery widely. But the physicist Hans Bethe was

skeptical. Bethe visited Schein, and looked at the plates showing the

tracks of Schein's new particle. Schein showed Bethe plate after

plate, but on each plate Bethe identified some problem that

suggested the data should be discarded. Finally, Schein showed

Bethe a plate that looked good. Bethe said it might just be a

statistical fluke. Schein: "Yes, but the chance that this would be

statistics, even according to your own formula, is one in five."

Bethe: "But we have already looked at five plates." Finally, Schein

said: "But on my plates, each one of the good plates, each one of the

good pictures, you explain by a different theory, whereas I have one

hypothesis that explains all the plates, that they are [the new

particle]." Bethe replied: "The sole difference between your and my

explanations is that yours is wrong and all of mine are right. Your

single explanation is wrong, and all of my multiple explanations are

right." Subsequent work confirmed that Nature agreed with Bethe,

and Schein's particle is no more*.

As a second example, in 1859 the astronomer Urbain Le Verrier

observed that the orbit of the planet Mercury doesn't have quite the

shape that Newton's theory of gravitation says it should have. It was

a tiny, tiny deviation from Newton's theory, and several of the

*The story is related by the physicist Richard

Feynman in an interview with the historian

Charles Weiner.
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explanations proferred at the time boiled down to saying that

Newton's theory was more or less right, but needed a tiny

alteration. In 1916, Einstein showed that the deviation could be

explained very well using his general theory of relativity, a theory

radically different to Newtonian gravitation, and based on much

more complex mathematics. Despite that additional complexity,

today it's accepted that Einstein's explanation is correct, and

Newtonian gravity, even in its modified forms, is wrong. This is in

part because we now know that Einstein's theory explains many

other phenomena which Newton's theory has difficulty with.

Furthermore, and even more impressively, Einstein's theory

accurately predicts several phenomena which aren't predicted by

Newtonian gravity at all. But these impressive qualities weren't

entirely obvious in the early days. If one had judged merely on the

grounds of simplicity, then some modified form of Newton's theory

would arguably have been more attractive.

There are three morals to draw from these stories. First, it can be

quite a subtle business deciding which of two explanations is truly

"simpler". Second, even if we can make such a judgment, simplicity

is a guide that must be used with great caution! Third, the true test

of a model is not simplicity, but rather how well it does in

predicting new phenomena, in new regimes of behaviour.

With that said, and keeping the need for caution in mind, it's an

empirical fact that regularized neural networks usually generalize

better than unregularized networks. And so through the remainder

of the book we will make frequent use of regularization. I've

included the stories above merely to help convey why no-one has

yet developed an entirely convincing theoretical explanation for

why regularization helps networks generalize. Indeed, researchers

continue to write papers where they try different approaches to

regularization, compare them to see which works better, and

attempt to understand why different approaches work better or

worse. And so you can view regularization as something of a kludge.

While it often helps, we don't have an entirely satisfactory
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systematic understanding of what's going on, merely incomplete

heuristics and rules of thumb.

There's a deeper set of issues here, issues which go to the heart of

science. It's the question of how we generalize. Regularization may

give us a computational magic wand that helps our networks

generalize better, but it doesn't give us a principled understanding

of how generalization works, nor of what the best approach is*.

This is particularly galling because in everyday life, we humans

generalize phenomenally well. Shown just a few images of an

elephant a child will quickly learn to recognize other elephants. Of

course, they may occasionally make mistakes, perhaps confusing a

rhinoceros for an elephant, but in general this process works

remarkably accurately. So we have a system - the human brain -

with a huge number of free parameters. And after being shown just

one or a few training images that system learns to generalize to

other images. Our brains are, in some sense, regularizing amazingly

well! How do we do it? At this point we don't know. I expect that in

years to come we will develop more powerful techniques for

regularization in artificial neural networks, techniques that will

ultimately enable neural nets to generalize well even from small

data sets.

In fact, our networks already generalize better than one might a

priori expect. A network with 100 hidden neurons has nearly

80,000 parameters. We have only 50,000 images in our training

data. It's like trying to fit an 80,000th degree polynomial to 50,000

data points. By all rights, our network should overfit terribly. And

yet, as we saw earlier, such a network actually does a pretty good

job generalizing. Why is that the case? It's not well understood. It

has been conjectured* that "the dynamics of gradient descent

learning in multilayer nets has a `self-regularization' effect". This is

exceptionally fortunate, but it's also somewhat disquieting that we

don't understand why it's the case. In the meantime, we will adopt

the pragmatic approach and use regularization whenever we can.

Our neural networks will be the better for it.

*These issues go back to the problem of

induction, famously discussed by the Scottish

philosopher David Hume in "An Enquiry

Concerning Human Understanding" (1748). The

problem of induction has been given a modern

machine learning form in the no-free lunch

theorem (link) of David Wolpert and William

Macready (1997).

*In Gradient-Based Learning Applied to

Document Recognition, by Yann LeCun, Léon

Bottou, Yoshua Bengio, and Patrick Haffner

(1998).
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Let me conclude this section by returning to a detail which I left

unexplained earlier: the fact that L2 regularization doesn't

constrain the biases. Of course, it would be easy to modify the

regularization procedure to regularize the biases. Empirically, doing

this often doesn't change the results very much, so to some extent

it's merely a convention whether to regularize the biases or not.

However, it's worth noting that having a large bias doesn't make a

neuron sensitive to its inputs in the same way as having large

weights. And so we don't need to worry about large biases enabling

our network to learn the noise in our training data. At the same

time, allowing large biases gives our networks more flexibility in

behaviour - in particular, large biases make it easier for neurons to

saturate, which is sometimes desirable. For these reasons we don't

usually include bias terms when regularizing.

Other techniques for regularization

There are many regularization techniques other than L2

regularization. In fact, so many techniques have been developed

that I can't possibly summarize them all. In this section I briefly

describe three other approaches to reducing overfitting: L1

regularization, dropout, and artificially increasing the training set

size. We won't go into nearly as much depth studying these

techniques as we did earlier. Instead, the purpose is to get familiar

with the main ideas, and to appreciate something of the diversity of

regularization techniques available.

L1 regularization: In this approach we modify the unregularized

cost function by adding the sum of the absolute values of the

weights:

C = C0 +
λ
n
∑
w
|w | .

Intuitively, this is similar to L2 regularization, penalizing large

weights, and tending to make the network prefer small weights. Of

course, the L1 regularization term isn't the same as the L2

regularization term, and so we shouldn't expect to get exactly theLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



same behaviour. Let's try to understand how the behaviour of a

network trained using L1 regularization differs from a network

trained using L2 regularization.

To do that, we'll look at the partial derivatives of the cost function.

Differentiating (95) we obtain:

∂C
∂w

=
∂C0

∂w
+
λ
n
sgn(w),

where sgn(w) is the sign of w, that is, +1 if w is positive, and −1 if w

is negative. Using this expression, we can easily modify

backpropagation to do stochastic gradient descent using L1

regularization. The resulting update rule for an L1 regularized

network is

w → w ′ = w −
ηλ
n
sgn(w) − η

∂C0

∂w
,

where, as per usual, we can estimate ∂C0 /∂w using a mini-batch

average, if we wish. Compare that to the update rule for L2

regularization (c.f. Equation (93)),

w → w ′ = w 1 −
ηλ
n

− η
∂C0

∂w
.

In both expressions the effect of regularization is to shrink the

weights. This accords with our intuition that both kinds of

regularization penalize large weights. But the way the weights

shrink is different. In L1 regularization, the weights shrink by a

constant amount toward 0. In L2 regularization, the weights shrink

by an amount which is proportional to w. And so when a particular

weight has a large magnitude, |w | , L1 regularization shrinks the

weight much less than L2 regularization does. By contrast, when

|w |  is small, L1 regularization shrinks the weight much more than

L2 regularization. The net result is that L1 regularization tends to

concentrate the weight of the network in a relatively small number

of high-importance connections, while the other weights are driven

toward zero.

( )
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I've glossed over an issue in the above discussion, which is that the

partial derivative ∂C /∂w isn't defined when w = 0. The reason is that

the function |w |  has a sharp "corner" at w = 0, and so isn't

differentiable at that point. That's okay, though. What we'll do is

just apply the usual (unregularized) rule for stochastic gradient

descent when w = 0. That should be okay - intuitively, the effect of

regularization is to shrink weights, and obviously it can't shrink a

weight which is already 0. To put it more precisely, we'll use

Equations (96) and (97) with the convention that sgn(0) = 0. That

gives a nice, compact rule for doing stochastic gradient descent with

L1 regularization.

Dropout: Dropout is a radically different technique for

regularization. Unlike L1 and L2 regularization, dropout doesn't

rely on modifying the cost function. Instead, in dropout we modify

the network itself. Let me describe the basic mechanics of how

dropout works, before getting into why it works, and what the

results are.

Suppose we're trying to train a network:

In particular, suppose we have a training input x and corresponding

desired output y. Ordinarily, we'd train by forward-propagating x

through the network, and then backpropagating to determine the

contribution to the gradient. With dropout, this process is modified.

We start by randomly (and temporarily) deleting half the hidden

neurons in the network, while leaving the input and output neuronsLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



untouched. After doing this, we'll end up with a network along the

following lines. Note that the dropout neurons, i.e., the neurons

which have been temporarily deleted, are still ghosted in:

We forward-propagate the input x through the modified network,

and then backpropagate the result, also through the modified

network. After doing this over a mini-batch of examples, we update

the appropriate weights and biases. We then repeat the process,

first restoring the dropout neurons, then choosing a new random

subset of hidden neurons to delete, estimating the gradient for a

different mini-batch, and updating the weights and biases in the

network.

By repeating this process over and over, our network will learn a set

of weights and biases. Of course, those weights and biases will have

been learnt under conditions in which half the hidden neurons were

dropped out. When we actually run the full network that means that

twice as many hidden neurons will be active. To compensate for

that, we halve the weights outgoing from the hidden neurons.

This dropout procedure may seem strange and ad hoc. Why would

we expect it to help with regularization? To explain what's going on,

I'd like you to briefly stop thinking about dropout, and instead

imagine training neural networks in the standard way (no dropout).

In particular, imagine we train several different neural networks, all

using the same training data. Of course, the networks may not start

out identical, and as a result after training they may sometimes giveLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



different results. When that happens we could use some kind of

averaging or voting scheme to decide which output to accept. For

instance, if we have trained five networks, and three of them are

classifying a digit as a "3", then it probably really is a "3". The other

two networks are probably just making a mistake. This kind of

averaging scheme is often found to be a powerful (though

expensive) way of reducing overfitting. The reason is that the

different networks may overfit in different ways, and averaging may

help eliminate that kind of overfitting.

What's this got to do with dropout? Heuristically, when we dropout

different sets of neurons, it's rather like we're training different

neural networks. And so the dropout procedure is like averaging the

effects of a very large number of different networks. The different

networks will overfit in different ways, and so, hopefully, the net

effect of dropout will be to reduce overfitting.

A related heuristic explanation for dropout is given in one of the

earliest papers to use the technique*: "This technique reduces

complex co-adaptations of neurons, since a neuron cannot rely on

the presence of particular other neurons. It is, therefore, forced to

learn more robust features that are useful in conjunction with many

different random subsets of the other neurons." In other words, if

we think of our network as a model which is making predictions,

then we can think of dropout as a way of making sure that the

model is robust to the loss of any individual piece of evidence. In

this, it's somewhat similar to L1 and L2 regularization, which tend

to reduce weights, and thus make the network more robust to losing

any individual connection in the network.

Of course, the true measure of dropout is that it has been very

successful in improving the performance of neural networks. The

original paper* introducing the technique applied it to many

different tasks. For us, it's of particular interest that they applied

dropout to MNIST digit classification, using a vanilla feedforward

neural network along lines similar to those we've been considering.

The paper noted that the best result anyone had achieved up to that

*ImageNet Classification with Deep

Convolutional Neural Networks, by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton

(2012).

*Improving neural networks by preventing co-

adaptation of feature detectors by Geoffrey

Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov (2012).

Note that the paper discusses a number of

subtleties that I have glossed over in this brief

introduction.
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point using such an architecture was 98.4 percent classification

accuracy on the test set. They improved that to 98.7 percent

accuracy using a combination of dropout and a modified form of L2

regularization. Similarly impressive results have been obtained for

many other tasks, including problems in image and speech

recognition, and natural language processing. Dropout has been

especially useful in training large, deep networks, where the

problem of overfitting is often acute.

Artificially expanding the training data: We saw earlier that

our MNIST classification accuracy dropped down to percentages in

the mid-80s when we used only 1,000 training images. It's not

surprising that this is the case, since less training data means our

network will be exposed to fewer variations in the way human

beings write digits. Let's try training our 30 hidden neuron network

with a variety of different training data set sizes, to see how

performance varies. We train using a mini-batch size of 10, a

learning rate η = 0.5, a regularization parameter λ = 5.0, and the

cross-entropy cost function. We will train for 30 epochs when the

full training data set is used, and scale up the number of epochs

proportionally when smaller training sets are used. To ensure the

weight decay factor remains the same across training sets, we will

use a regularization parameter of λ = 5.0 when the full training data

set is used, and scale down λ proportionally when smaller training

sets are used*. *This and the next two graph are produced with

the program more_data.py.
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As you can see, the classification accuracies improve considerably

as we use more training data. Presumably this improvement would

continue still further if more data was available. Of course, looking

at the graph above it does appear that we're getting near saturation.

Suppose, however, that we redo the graph with the training set size

plotted logarithmically:

It seems clear that the graph is still going up toward the end. This

suggests that if we used vastly more training data - say, millions or

even billions of handwriting samples, instead of just 50,000 - then

we'd likely get considerably better performance, even from this very

small network.
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Obtaining more training data is a great idea. Unfortunately, it can

be expensive, and so is not always possible in practice. However,

there's another idea which can work nearly as well, and that's to

artificially expand the training data. Suppose, for example, that we

take an MNIST training image of a five,

and rotate it by a small amount, let's say 15 degrees:

It's still recognizably the same digit. And yet at the pixel level it's

quite different to any image currently in the MNIST training data.

It's conceivable that adding this image to the training data might

help our network learn more about how to classify digits. What's

more, obviously we're not limited to adding just this one image. We

can expand our training data by making many small rotations of all

the MNIST training images, and then using the expanded training

data to improve our network's performance.

This idea is very powerful and has been widely used. Let's look at

some of the results from a paper* which applied several variations

of the idea to MNIST. One of the neural network architectures they

considered was along similar lines to what we've been using, a

feedforward network with 800 hidden neurons and using the cross-

entropy cost function. Running the network with the standard

MNIST training data they achieved a classification accuracy of 98.4

percent on their test set. But then they expanded the training data,

using not just rotations, as I described above, but also translating

and skewing the images. By training on the expanded data set they

increased their network's accuracy to 98.9 percent. They also

experimented with what they called "elastic distortions", a special

type of image distortion intended to emulate the random

*Best Practices for Convolutional Neural

Networks Applied to Visual Document Analysis,

by Patrice Simard, Dave Steinkraus, and John

Platt (2003).
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oscillations found in hand muscles. By using the elastic distortions

to expand the data they achieved an even higher accuracy, 99.3

percent. Effectively, they were broadening the experience of their

network by exposing it to the sort of variations that are found in

real handwriting.

Variations on this idea can be used to improve performance on

many learning tasks, not just handwriting recognition. The general

principle is to expand the training data by applying operations that

reflect real-world variation. It's not difficult to think of ways of

doing this. Suppose, for example, that you're building a neural

network to do speech recognition. We humans can recognize speech

even in the presence of distortions such as background noise. And

so you can expand your data by adding background noise. We can

also recognize speech if it's sped up or slowed down. So that's

another way we can expand the training data. These techniques are

not always used - for instance, instead of expanding the training

data by adding noise, it may well be more efficient to clean up the

input to the network by first applying a noise reduction filter. Still,

it's worth keeping the idea of expanding the training data in mind,

and looking for opportunities to apply it.

Exercise

As discussed above, one way of expanding the MNIST training

data is to use small rotations of training images. What's a

problem that might occur if we allow arbitrarily large rotations

of training images?

An aside on big data and what it means to compare

classification accuracies: Let's look again at how our neural

network's accuracy varies with training set size:
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Suppose that instead of using a neural network we use some other

machine learning technique to classify digits. For instance, let's try

using the support vector machines (SVM) which we met briefly

back in Chapter 1. As was the case in Chapter 1, don't worry if you're

not familiar with SVMs, we don't need to understand their details.

Instead, we'll use the SVM supplied by the scikit-learn library.

Here's how SVM performance varies as a function of training set

size. I've plotted the neural net results as well, to make comparison

easy*:

Probably the first thing that strikes you about this graph is that our

neural network outperforms the SVM for every training set size.

*This graph was produced with the program

more_data.py (as were the last few graphs).
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That's nice, although you shouldn't read too much into it, since I

just used the out-of-the-box settings from scikit-learn's SVM, while

we've done a fair bit of work improving our neural network. A more

subtle but more interesting fact about the graph is that if we train

our SVM using 50,000 images then it actually has better

performance (94.48 percent accuracy) than our neural network

does when trained using 5,000 images (93.24 percent accuracy). In

other words, more training data can sometimes compensate for

differences in the machine learning algorithm used.

Something even more interesting can occur. Suppose we're trying to

solve a problem using two machine learning algorithms, algorithm

A and algorithm B. It sometimes happens that algorithm A will

outperform algorithm B with one set of training data, while

algorithm B will outperform algorithm A with a different set of

training data. We don't see that above - it would require the two

graphs to cross - but it does happen*. The correct response to the

question "Is algorithm A better than algorithm B?" is really: "What

training data set are you using?"

All this is a caution to keep in mind, both when doing development,

and when reading research papers. Many papers focus on finding

new tricks to wring out improved performance on standard

benchmark data sets. "Our whiz-bang technique gave us an

improvement of X percent on standard benchmark Y" is a canonical

form of research claim. Such claims are often genuinely interesting,

but they must be understood as applying only in the context of the

specific training data set used. Imagine an alternate history in

which the people who originally created the benchmark data set had

a larger research grant. They might have used the extra money to

collect more training data. It's entirely possible that the

"improvement" due to the whiz-bang technique would disappear on

a larger data set. In other words, the purported improvement might

be just an accident of history. The message to take away, especially

in practical applications, is that what we want is both better

algorithms and better training data. It's fine to look for better

*Striking examples may be found in Scaling to

very very large corpora for natural language

disambiguation, by Michele Banko and Eric Brill

(2001).
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algorithms, but make sure you're not focusing on better algorithms

to the exclusion of easy wins getting more or better training data.

Problem

(Research problem) How do our machine learning

algorithms perform in the limit of very large data sets? For any

given algorithm it's natural to attempt to define a notion of

asymptotic performance in the limit of truly big data. A quick-

and-dirty approach to this problem is to simply try fitting

curves to graphs like those shown above, and then to

extrapolate the fitted curves out to infinity. An objection to this

approach is that different approaches to curve fitting will give

different notions of asymptotic performance. Can you find a

principled justification for fitting to some particular class of

curves? If so, compare the asymptotic performance of several

different machine learning algorithms.

Summing up: We've now completed our dive into overfitting and

regularization. Of course, we'll return again to the issue. As I've

mentioned several times, overfitting is a major problem in neural

networks, especially as computers get more powerful, and we have

the ability to train larger networks. As a result there's a pressing

need to develop powerful regularization techniques to reduce

overfitting, and this is an extremely active area of current work.

Weight initialization
When we create our neural networks, we have to make choices for

the initial weights and biases. Up to now, we've been choosing them

according to a prescription which I discussed only briefly back in

Chapter 1. Just to remind you, that prescription was to choose both

the weights and biases using independent Gaussian random

variables, normalized to have mean 0 and standard deviation 1.

While this approach has worked well, it was quite ad hoc, and it's

worth revisiting to see if we can find a better way of setting our
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initial weights and biases, and perhaps help our neural networks

learn faster.

It turns out that we can do quite a bit better than initializing with

normalized Gaussians. To see why, suppose we're working with a

network with a large number - say 1, 000 - of input neurons. And

let's suppose we've used normalized Gaussians to initialize the

weights connecting to the first hidden layer. For now I'm going to

concentrate specifically on the weights connecting the input

neurons to the first neuron in the hidden layer, and ignore the rest

of the network:

We'll suppose for simplicity that we're trying to train using a

training input x in which half the input neurons are on, i.e., set to 1,

and half the input neurons are off, i.e., set to 0. The argument which

follows applies more generally, but you'll get the gist from this

special case. Let's consider the weighted sum z = ∑jwjxj + b of

inputs to our hidden neuron. 500 terms in this sum vanish, because

the corresponding input xj is zero. And so z is a sum over a total of

501 normalized Gaussian random variables, accounting for the 500

weight terms and the 1 extra bias term. Thus z is itself distributed as

a Gaussian with mean zero and standard deviation √501 ≈ 22.4.

That is, z has a very broad Gaussian distribution, not sharply

peaked at all:

-30 -20 -10 0 10 20 30

0.02
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In particular, we can see from this graph that it's quite likely that

| z |  will be pretty large, i.e., either z ≫ 1 or z ≪ − 1. If that's the

case then the output σ(z) from the hidden neuron will be very close

to either 1 or 0. That means our hidden neuron will have saturated.

And when that happens, as we know, making small changes in the

weights will make only absolutely miniscule changes in the

activation of our hidden neuron. That miniscule change in the

activation of the hidden neuron will, in turn, barely affect the rest of

the neurons in the network at all, and we'll see a correspondingly

miniscule change in the cost function. As a result, those weights will

only learn very slowly when we use the gradient descent algorithm*.

It's similar to the problem we discussed earlier in this chapter, in

which output neurons which saturated on the wrong value caused

learning to slow down. We addressed that earlier problem with a

clever choice of cost function. Unfortunately, while that helped with

saturated output neurons, it does nothing at all for the problem

with saturated hidden neurons.

I've been talking about the weights input to the first hidden layer.

Of course, similar arguments apply also to later hidden layers: if the

weights in later hidden layers are initialized using normalized

Gaussians, then activations will often be very close to 0 or 1, and

learning will proceed very slowly.

Is there some way we can choose better initializations for the

weights and biases, so that we don't get this kind of saturation, and

so avoid a learning slowdown? Suppose we have a neuron with nin
input weights. Then we shall initialize those weights as Gaussian

random variables with mean 0 and standard deviation 1/ nin. That

is, we'll squash the Gaussians down, making it less likely that our

neuron will saturate. We'll continue to choose the bias as a

Gaussian with mean 0 and standard deviation 1, for reasons I'll

return to in a moment. With these choices, the weighted sum

z = ∑jwjxj + b will again be a Gaussian random variable with mean 0

, but it'll be much more sharply peaked than it was before. Suppose,

as we did earlier, that 500 of the inputs are zero and 500 are 1. Then

it's easy to show (see the exercise below) that z has a Gaussian

*We discussed this in more detail in Chapter 2,

where we used the equations of backpropagation

to show that weights input to saturated neurons

learned slowly.

√
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distribution with mean 0 and standard deviation √3/2 = 1.22….

This is much more sharply peaked than before, so much so that

even the graph below understates the situation, since I've had to

rescale the vertical axis, when compared to the earlier graph:

-30 -20 -10 0 10 20 30

0.4

Such a neuron is much less likely to saturate, and correspondingly

much less likely to have problems with a learning slowdown.

Exercise

Verify that the standard deviation of z = ∑jwjxj + b in the

paragraph above is √3/2. It may help to know that: (a) the

variance of a sum of independent random variables is the sum

of the variances of the individual random variables; and (b) the

variance is the square of the standard deviation.

I stated above that we'll continue to initialize the biases as before, as

Gaussian random variables with a mean of 0 and a standard

deviation of 1. This is okay, because it doesn't make it too much

more likely that our neurons will saturate. In fact, it doesn't much

matter how we initialize the biases, provided we avoid the problem

with saturation. Some people go so far as to initialize all the biases

to 0, and rely on gradient descent to learn appropriate biases. But

since it's unlikely to make much difference, we'll continue with the

same initialization procedure as before.
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Let's compare the results for both our old and new approaches to

weight initialization, using the MNIST digit classification task. As

before, we'll use 30 hidden neurons, a mini-batch size of 10, a

regularization parameter λ = 5.0, and the cross-entropy cost

function. We will decrease the learning rate slightly from η = 0.5 to

0.1, since that makes the results a little more easily visible in the

graphs. We can train using the old method of weight initialization:

>>> import mnist_loader

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.1, lmbda = 5.0,

... evaluation_data=validation_data, 

... monitor_evaluation_accuracy=True)

We can also train using the new approach to weight initialization.

This is actually even easier, since network2's default way of

initializing the weights is using this new approach. That means we

can omit the net.large_weight_initializer() call above:

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.SGD(training_data, 30, 10, 0.1, lmbda = 5.0,

... evaluation_data=validation_data, 

... monitor_evaluation_accuracy=True)

Plotting the results*, we obtain:

In both cases, we end up with a classification accuracy somewhat

over 96 percent. The final classification accuracy is almost exactly

*The program used to generate this and the next

graph is weight_initialization.py.
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the same in the two cases. But the new initialization technique

brings us there much, much faster. At the end of the first epoch of

training the old approach to weight initialization has a classification

accuracy under 87 percent, while the new approach is already

almost 93 percent. What appears to be going on is that our new

approach to weight initialization starts us off in a much better

regime, which lets us get good results much more quickly. The same

phenomenon is also seen if we plot results with 100 hidden

neurons:

In this case, the two curves don't quite meet. However, my

experiments suggest that with just a few more epochs of training

(not shown) the accuracies become almost exactly the same. So on

the basis of these experiments it looks as though the improved

weight initialization only speeds up learning, it doesn't change the

final performance of our networks. However, in Chapter 4 we'll see

examples of neural networks where the long-run behaviour is

significantly better with the 1/ nin weight initialization. Thus it's

not only the speed of learning which is improved, it's sometimes

also the final performance.

The 1/ nin approach to weight initialization helps improve the way

our neural nets learn. Other techniques for weight initialization

have also been proposed, many building on this basic idea. I won't

√
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review the other approaches here, since 1/ nin works well enough

for our purposes. If you're interested in looking further, I

recommend looking at the discussion on pages 14 and 15 of a 2012

paper by Yoshua Bengio*, as well as the references therein.

Problem

Connecting regularization and the improved method

of weight initialization L2 regularization sometimes

automatically gives us something similar to the new approach

to weight initialization. Suppose we are using the old approach

to weight initialization. Sketch a heuristic argument that: (1)

supposing λ is not too small, the first epochs of training will be

dominated almost entirely by weight decay; (2) provided

ηλ ≪ n the weights will decay by a factor of exp( − ηλ /m) per

epoch; and (3) supposing λ is not too large, the weight decay

will tail off when the weights are down to a size around 1/√n,

where n is the total number of weights in the network. Argue

that these conditions are all satisfied in the examples graphed

in this section.

Handwriting recognition revisited: the
code
Let's implement the ideas we've discussed in this chapter. We'll

develop a new program, network2.py, which is an improved version

of the program network.py we developed in Chapter 1. If you haven't

looked at network.py in a while then you may find it helpful to spend

a few minutes quickly reading over the earlier discussion. It's only

74 lines of code, and is easily understood.

As was the case in network.py, the star of network2.py is the Network

class, which we use to represent our neural networks. We initialize

an instance of Network with a list of sizes for the respective layers in

the network, and a choice for the cost to use, defaulting to the cross-

entropy:

√

*Practical Recommendations for Gradient-Based

Training of Deep Architectures, by Yoshua

Bengio (2012).
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class Network(object):

    def __init__(self, sizes, cost=CrossEntropyCost):

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.default_weight_initializer()

        self.cost=cost

The first couple of lines of the __init__ method are the same as in

network.py, and are pretty self-explanatory. But the next two lines

are new, and we need to understand what they're doing in detail.

Let's start by examining the default_weight_initializer method. This

makes use of our new and improved approach to weight

initialization. As we've seen, in that approach the weights input to a

neuron are initialized as Gaussian random variables with mean 0

and standard deviation 1 divided by the square root of the number

of connections input to the neuron. Also in this method we'll

initialize the biases, using Gaussian random variables with mean 0

and standard deviation 1. Here's the code:

    def default_weight_initializer(self):

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]

        self.weights = [np.random.randn(y, x)/np.sqrt(x) 

                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]

To understand the code, it may help to recall that np is the Numpy

library for doing linear algebra. We'll import Numpy at the

beginning of our program. Also, notice that we don't initialize any

biases for the first layer of neurons. We avoid doing this because the

first layer is an input layer, and so any biases would not be used. We

did exactly the same thing in network.py.

Complementing the default_weight_initializer we'll also include a

large_weight_initializer method. This method initializes the

weights and biases using the old approach from Chapter 1, with

both weights and biases initialized as Gaussian random variables

with mean 0 and standard deviation 1. The code is, of course, only a

tiny bit different from the default_weight_initializer:

    def large_weight_initializer(self):

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]

        self.weights = [np.random.randn(y, x) 
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I've included the large_weight_initializer method mostly as a

convenience to make it easier to compare the results in this chapter

to those in Chapter 1. I can't think of many practical situations

where I would recommend using it!

The second new thing in Network's __init__ method is that we now

initialize a cost attribute. To understand how that works, let's look

at the class we use to represent the cross-entropy cost*:

class CrossEntropyCost(object):

    @staticmethod

    def fn(a, y):

        return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))

    @staticmethod

    def delta(z, a, y):

        return (a-y)

Let's break this down. The first thing to observe is that even though

the cross-entropy is, mathematically speaking, a function, we've

implemented it as a Python class, not a Python function. Why have

I made that choice? The reason is that the cost plays two different

roles in our network. The obvious role is that it's a measure of how

well an output activation, a, matches the desired output, y. This role

is captured by the CrossEntropyCost.fn method. (Note, by the way,

that the np.nan_to_num call inside CrossEntropyCost.fn ensures that

Numpy deals correctly with the log of numbers very close to zero.)

But there's also a second way the cost function enters our network.

Recall from Chapter 2 that when running the backpropagation

algorithm we need to compute the network's output error, δL. The

form of the output error depends on the choice of cost function:

different cost function, different form for the output error. For the

cross-entropy the output error is, as we saw in Equation (66),

δL = aL − y.

For this reason we define a second method, CrossEntropyCost.delta,

whose purpose is to tell our network how to compute the output

error. And then we bundle these two methods up into a single class

containing everything our networks need to know about the cost

function.

*If you're not familiar with Python's static

methods you can ignore the @staticmethod

decorators, and just treat fn and delta as

ordinary methods. If you're curious about

details, all @staticmethod does is tell the

Python interpreter that the method which

follows doesn't depend on the object in any way.

That's why self isn't passed as a parameter to

the fn and delta methods.
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In a similar way, network2.py also contains a class to represent the

quadratic cost function. This is included for comparison with the

results of Chapter 1, since going forward we'll mostly use the cross

entropy. The code is just below. The QuadraticCost.fn method is a

straightforward computation of the quadratic cost associated to the

actual output, a, and the desired output, y. The value returned by

QuadraticCost.delta is based on the expression (30) for the output

error for the quadratic cost, which we derived back in Chapter 2.

class QuadraticCost(object):

    @staticmethod

    def fn(a, y):

        return 0.5*np.linalg.norm(a-y)**2

    @staticmethod

    def delta(z, a, y):

        return (a-y) * sigmoid_prime(z)

We've now understood the main differences between network2.py

and network.py. It's all pretty simple stuff. There are a number of

smaller changes, which I'll discuss below, including the

implementation of L2 regularization. Before getting to that, let's

look at the complete code for network2.py. You don't need to read all

the code in detail, but it is worth understanding the broad structure,

and in particular reading the documentation strings, so you

understand what each piece of the program is doing. Of course,

you're also welcome to delve as deeply as you wish! If you get lost,

you may wish to continue reading the prose below, and return to

the code later. Anyway, here's the code:

"""network2.py

~~~~~~~~~~~~~~

An improved version of network.py, implementing the stochastic

gradient descent learning algorithm for a feedforward neural network.

Improvements include the addition of the cross-entropy cost function,

regularization, and better initialization of network weights.  Note

that I have focused on making the code simple, easily readable, and

easily modifiable.  It is not optimized, and omits many desirable

features.

"""

#### Libraries

# Standard library

import json

import random
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import sys

# Third-party libraries

import numpy as np

#### Define the quadratic and cross-entropy cost functions

class QuadraticCost(object):

    @staticmethod

    def fn(a, y):

        """Return the cost associated with an output ``a`` and desired output

        ``y``.

        """

        return 0.5*np.linalg.norm(a-y)**2

    @staticmethod

    def delta(z, a, y):

        """Return the error delta from the output layer."""

        return (a-y) * sigmoid_prime(z)

class CrossEntropyCost(object):

    @staticmethod

    def fn(a, y):

        """Return the cost associated with an output ``a`` and desired output

        ``y``.  Note that np.nan_to_num is used to ensure numerical

        stability.  In particular, if both ``a`` and ``y`` have a 1.0

        in the same slot, then the expression (1-y)*np.log(1-a)

        returns nan.  The np.nan_to_num ensures that that is converted

        to the correct value (0.0).

        """

        return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))

    @staticmethod

    def delta(z, a, y):

        """Return the error delta from the output layer.  Note that the

        parameter ``z`` is not used by the method.  It is included in

        the method's parameters in order to make the interface

        consistent with the delta method for other cost classes.

        """

        return (a-y)

#### Main Network class

class Network(object):

    def __init__(self, sizes, cost=CrossEntropyCost):

        """The list ``sizes`` contains the number of neurons in the respective

        layers of the network.  For example, if the list was [2, 3, 1]

        then it would be a three-layer network, with the first layer

        containing 2 neurons, the second layer 3 neurons, and the

        third layer 1 neuron.  The biases and weights for the network

        are initialized randomly, using

        ``self.default_weight_initializer`` (see docstring for that

        method).
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        """

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.default_weight_initializer()

        self.cost=cost

    def default_weight_initializer(self):

        """Initialize each weight using a Gaussian distribution with mean 0

        and standard deviation 1 over the square root of the number of

        weights connecting to the same neuron.  Initialize the biases

        using a Gaussian distribution with mean 0 and standard

        deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        """

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]

        self.weights = [np.random.randn(y, x)/np.sqrt(x)

                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]

    def large_weight_initializer(self):

        """Initialize the weights using a Gaussian distribution with mean 0

        and standard deviation 1.  Initialize the biases using a

        Gaussian distribution with mean 0 and standard deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        This weight and bias initializer uses the same approach as in

        Chapter 1, and is included for purposes of comparison.  It

        will usually be better to use the default weight initializer

        instead.

        """

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]

        self.weights = [np.random.randn(y, x)

                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]

    def feedforward(self, a):

        """Return the output of the network if ``a`` is input."""

        for b, w in zip(self.biases, self.weights):

            a = sigmoid(np.dot(w, a)+b)

        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,

            lmbda = 0.0,

            evaluation_data=None,

            monitor_evaluation_cost=False,

            monitor_evaluation_accuracy=False,

            monitor_training_cost=False,

            monitor_training_accuracy=False):

        """Train the neural network using mini-batch stochastic gradient

        descent.  The ``training_data`` is a list of tuples ``(x, y)``

        representing the training inputs and the desired outputs.  The

        other non-optional parameters are self-explanatory, as is the
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        regularization parameter ``lmbda``.  The method also accepts

        ``evaluation_data``, usually either the validation or test

        data.  We can monitor the cost and accuracy on either the

        evaluation data or the training data, by setting the

        appropriate flags.  The method returns a tuple containing four

        lists: the (per-epoch) costs on the evaluation data, the

        accuracies on the evaluation data, the costs on the training

        data, and the accuracies on the training data.  All values are

        evaluated at the end of each training epoch.  So, for example,

        if we train for 30 epochs, then the first element of the tuple

        will be a 30-element list containing the cost on the

        evaluation data at the end of each epoch. Note that the lists

        are empty if the corresponding flag is not set.

        """

        if evaluation_data: n_data = len(evaluation_data)

        n = len(training_data)

        evaluation_cost, evaluation_accuracy = [], []

        training_cost, training_accuracy = [], []

        for j in xrange(epochs):

            random.shuffle(training_data)

            mini_batches = [

                training_data[k:k+mini_batch_size]

                for k in xrange(0, n, mini_batch_size)]

            for mini_batch in mini_batches:

                self.update_mini_batch(

                    mini_batch, eta, lmbda, len(training_data))

            print "Epoch %s training complete" % j

            if monitor_training_cost:

                cost = self.total_cost(training_data, lmbda)

                training_cost.append(cost)

                print "Cost on training data: {}".format(cost)

            if monitor_training_accuracy:

                accuracy = self.accuracy(training_data, convert=True)

                training_accuracy.append(accuracy)

                print "Accuracy on training data: {} / {}".format(

                    accuracy, n)

            if monitor_evaluation_cost:

                cost = self.total_cost(evaluation_data, lmbda, convert=True)

                evaluation_cost.append(cost)

                print "Cost on evaluation data: {}".format(cost)

            if monitor_evaluation_accuracy:

                accuracy = self.accuracy(evaluation_data)

                evaluation_accuracy.append(accuracy)

                print "Accuracy on evaluation data: {} / {}".format(

                    self.accuracy(evaluation_data), n_data)

            print

        return evaluation_cost, evaluation_accuracy, \

            training_cost, training_accuracy

    def update_mini_batch(self, mini_batch, eta, lmbda, n):

        """Update the network's weights and biases by applying gradient

        descent using backpropagation to a single mini batch.  The

        ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the

        learning rate, ``lmbda`` is the regularization parameter, and

        ``n`` is the total size of the training data set.

        """

        nabla_b = [np.zeros(b.shape) for b in self.biases]

        nabla_w = [np.zeros(w.shape) for w in self.weights]

        for x, y in mini_batch:
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            delta_nabla_b, delta_nabla_w = self.backprop(x, y)

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

        self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw

                        for w, nw in zip(self.weights, nabla_w)]

        self.biases = [b-(eta/len(mini_batch))*nb

                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):

        """Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

        nabla_b = [np.zeros(b.shape) for b in self.biases]

        nabla_w = [np.zeros(w.shape) for w in self.weights]

        # feedforward

        activation = x

        activations = [x] # list to store all the activations, layer by layer

        zs = [] # list to store all the z vectors, layer by layer

        for b, w in zip(self.biases, self.weights):

            z = np.dot(w, activation)+b

            zs.append(z)

            activation = sigmoid(z)

            activations.append(activation)

        # backward pass

        delta = (self.cost).delta(zs[-1], activations[-1], y)

        nabla_b[-1] = delta

        nabla_w[-1] = np.dot(delta, activations[-2].transpose())

        # Note that the variable l in the loop below is used a little

        # differently to the notation in Chapter 2 of the book.  Here,

        # l = 1 means the last layer of neurons, l = 2 is the

        # second-last layer, and so on.  It's a renumbering of the

        # scheme in the book, used here to take advantage of the fact

        # that Python can use negative indices in lists.

        for l in xrange(2, self.num_layers):

            z = zs[-l]

            sp = sigmoid_prime(z)

            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

            nabla_b[-l] = delta

            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

        return (nabla_b, nabla_w)

    def accuracy(self, data, convert=False):

        """Return the number of inputs in ``data`` for which the neural

        network outputs the correct result. The neural network's

        output is assumed to be the index of whichever neuron in the

        final layer has the highest activation.

        The flag ``convert`` should be set to False if the data set is

        validation or test data (the usual case), and to True if the

        data set is the training data. The need for this flag arises

        due to differences in the way the results ``y`` are

        represented in the different data sets.  In particular, it

        flags whether we need to convert between the different

        representations.  It may seem strange to use different

        representations for the different data sets.  Why not use the

        same representation for all three data sets?  It's done for

        efficiency reasons -- the program usually evaluates the cost

        on the training data and the accuracy on other data sets.

        These are different types of computations, and using different

        representations speeds things up.  More details on the
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        representations can be found in

        mnist_loader.load_data_wrapper.

        """

        if convert:

            results = [(np.argmax(self.feedforward(x)), np.argmax(y))

                       for (x, y) in data]

        else:

            results = [(np.argmax(self.feedforward(x)), y)

                        for (x, y) in data]

        return sum(int(x == y) for (x, y) in results)

    def total_cost(self, data, lmbda, convert=False):

        """Return the total cost for the data set ``data``.  The flag

        ``convert`` should be set to False if the data set is the

        training data (the usual case), and to True if the data set is

        the validation or test data.  See comments on the similar (but

        reversed) convention for the ``accuracy`` method, above.

        """

        cost = 0.0

        for x, y in data:

            a = self.feedforward(x)

            if convert: y = vectorized_result(y)

            cost += self.cost.fn(a, y)/len(data)

        cost += 0.5*(lmbda/len(data))*sum(

            np.linalg.norm(w)**2 for w in self.weights)

        return cost

    def save(self, filename):

        """Save the neural network to the file ``filename``."""

        data = {"sizes": self.sizes,

                "weights": [w.tolist() for w in self.weights],

                "biases": [b.tolist() for b in self.biases],

                "cost": str(self.cost.__name__)}

        f = open(filename, "w")

        json.dump(data, f)

        f.close()

#### Loading a Network

def load(filename):

    """Load a neural network from the file ``filename``.  Returns an

    instance of Network.

    """

    f = open(filename, "r")

    data = json.load(f)

    f.close()

    cost = getattr(sys.modules[__name__], data["cost"])

    net = Network(data["sizes"], cost=cost)

    net.weights = [np.array(w) for w in data["weights"]]

    net.biases = [np.array(b) for b in data["biases"]]

    return net

#### Miscellaneous functions

def vectorized_result(j):

    """Return a 10-dimensional unit vector with a 1.0 in the j'th position

    and zeroes elsewhere.  This is used to convert a digit (0...9)

    into a corresponding desired output from the neural network.

    """

    e = np.zeros((10, 1))
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    e[j] = 1.0

    return e

def sigmoid(z):

    """The sigmoid function."""

    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):

    """Derivative of the sigmoid function."""

    return sigmoid(z)*(1-sigmoid(z))

One of the more interesting changes in the code is to include L2

regularization. Although this is a major conceptual change, it's so

trivial to implement that it's easy to miss in the code. For the most

part it just involves passing the parameter lmbda to various methods,

notably the Network.SGD method. The real work is done in a single

line of the program, the fourth-last line of the

Network.update_mini_batch method. That's where we modify the

gradient descent update rule to include weight decay. But although

the modification is tiny, it has a big impact on results!

This is, by the way, common when implementing new techniques in

neural networks. We've spent thousands of words discussing

regularization. It's conceptually quite subtle and difficult to

understand. And yet it was trivial to add to our program! It occurs

surprisingly often that sophisticated techniques can be

implemented with small changes to code.

Another small but important change to our code is the addition of

several optional flags to the stochastic gradient descent method,

Network.SGD. These flags make it possible to monitor the cost and

accuracy either on the training_data or on a set of evaluation_data

which can be passed to Network.SGD. We've used these flags often

earlier in the chapter, but let me give an example of how it works,

just to remind you:

>>> import mnist_loader

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.SGD(training_data, 30, 10, 0.5,

... lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True,

... monitor_evaluation_cost=True,
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... monitor_training_accuracy=True,

... monitor_training_cost=True)

Here, we're setting the evaluation_data to be the validation_data. But

we could also have monitored performance on the test_data or any

other data set. We also have four flags telling us to monitor the cost

and accuracy on both the evaluation_data and the training_data.

Those flags are False by default, but they've been turned on here in

order to monitor our Network's performance. Furthermore,

network2.py's Network.SGD method returns a four-element tuple

representing the results of the monitoring. We can use this as

follows:

>>> evaluation_cost, evaluation_accuracy, 

... training_cost, training_accuracy = net.SGD(training_data, 30, 10, 0.5,

... lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True,

... monitor_evaluation_cost=True,

... monitor_training_accuracy=True,

... monitor_training_cost=True)

So, for example, evaluation_cost will be a 30-element list containing

the cost on the evaluation data at the end of each epoch. This sort of

information is extremely useful in understanding a network's

behaviour. It can, for example, be used to draw graphs showing how

the network learns over time. Indeed, that's exactly how I

constructed all the graphs earlier in the chapter. Note, however,

that if any of the monitoring flags are not set, then the

corresponding element in the tuple will be the empty list.

Other additions to the code include a Network.save method, to save

Network objects to disk, and a function to load them back in again

later. Note that the saving and loading is done using JSON, not

Python's pickle or cPickle modules, which are the usual way we save

and load objects to and from disk in Python. Using JSON requires

more code than pickle or cPickle would. To understand why I've

used JSON, imagine that at some time in the future we decided to

change our Network class to allow neurons other than sigmoid

neurons. To implement that change we'd most likely change the

attributes defined in the Network.__init__ method. If we've simply

pickled the objects that would cause our load function to fail. Using
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JSON to do the serialization explicitly makes it easy to ensure that

old Networks will still load.

There are many other minor changes in the code for network2.py, but

they're all simple variations on network.py. The net result is to

expand our 74-line program to a far more capable 152 lines.

Problems

Modify the code above to implement L1 regularization, and use

L1 regularization to classify MNIST digits using a 30 hidden

neuron network. Can you find a regularization parameter that

enables you to do better than running unregularized?

Take a look at the Network.cost_derivative method in network.py.

That method was written for the quadratic cost. How would

you rewrite the method for the cross-entropy cost? Can you

think of a problem that might arise in the cross-entropy

version? In network2.py we've eliminated the

Network.cost_derivative method entirely, instead incorporating

its functionality into the CrossEntropyCost.delta method. How

does this solve the problem you've just identified?

How to choose a neural network's
hyper-parameters?
Up until now I haven't explained how I've been choosing values for

hyper-parameters such as the learning rate, η, the regularization

parameter, λ, and so on. I've just been supplying values which work

pretty well. In practice, when you're using neural nets to attack a

problem, it can be difficult to find good hyper-parameters. Imagine,

for example, that we've just been introduced to the MNIST

problem, and have begun working on it, knowing nothing at all

about what hyper-parameters to use. Let's suppose that by good

fortune in our first experiments we choose many of the hyper-

parameters in the same way as was done earlier this chapter: 30
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using the cross-entropy. But we choose a learning rate η = 10.0 and

regularization parameter λ = 1000.0. Here's what I saw on one such

run:

>>> import mnist_loader

>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2

>>> net = network2.Network([784, 30, 10])

>>> net.SGD(training_data, 30, 10, 10.0, lmbda = 1000.0,

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 1030 / 10000

Epoch 1 training complete

Accuracy on evaluation data: 990 / 10000

Epoch 2 training complete

Accuracy on evaluation data: 1009 / 10000

...

Epoch 27 training complete

Accuracy on evaluation data: 1009 / 10000

Epoch 28 training complete

Accuracy on evaluation data: 983 / 10000

Epoch 29 training complete

Accuracy on evaluation data: 967 / 10000

Our classification accuracies are no better than chance! Our

network is acting as a random noise generator!

"Well, that's easy to fix," you might say, "just decrease the learning

rate and regularization hyper-parameters". Unfortunately, you

don't a priori know those are the hyper-parameters you need to

adjust. Maybe the real problem is that our 30 hidden neuron

network will never work well, no matter how the other hyper-

parameters are chosen? Maybe we really need at least 100 hidden

neurons? Or 300 hidden neurons? Or multiple hidden layers? Or a

different approach to encoding the output? Maybe our network is

learning, but we need to train for more epochs? Maybe the mini-

batches are too small? Maybe we'd do better switching back to the

quadratic cost function? Maybe we need to try a different approach

to weight initialization? And so on, on and on and on. It's easy to

feel lost in hyper-parameter space. This can be particularly

frustrating if your network is very large, or uses a lot of training
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data, since you may train for hours or days or weeks, only to get no

result. If the situation persists, it damages your confidence. Maybe

neural networks are the wrong approach to your problem? Maybe

you should quit your job and take up beekeeping?

In this section I explain some heuristics which can be used to set

the hyper-parameters in a neural network. The goal is to help you

develop a workflow that enables you to do a pretty good job setting

hyper-parameters. Of course, I won't cover everything about hyper-

parameter optimization. That's a huge subject, and it's not, in any

case, a problem that is ever completely solved, nor is there universal

agreement amongst practitioners on the right strategies to use.

There's always one more trick you can try to eke out a bit more

performance from your network. But the heuristics in this section

should get you started.

Broad strategy: When using neural networks to attack a new

problem the first challenge is to get any non-trivial learning, i.e., for

the network to achieve results better than chance. This can be

surprisingly difficult, especially when confronting a new class of

problem. Let's look at some strategies you can use if you're having

this kind of trouble.

Suppose, for example, that you're attacking MNIST for the first

time. You start out enthusiastic, but are a little discouraged when

your first network fails completely, as in the example above. The

way to go is to strip the problem down. Get rid of all the training

and validation images except images which are 0s or 1s. Then try to

train a network to distinguish 0s from 1s. Not only is that an

inherently easier problem than distinguishing all ten digits, it also

reduces the amount of training data by 80 percent, speeding up

training by a factor of 5. That enables much more rapid

experimentation, and so gives you more rapid insight into how to

build a good network.

You can further speed up experimentation by stripping your

network down to the simplest network likely to do meaningful

learning. If you believe a [784, 10] network can likely do better-
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than-chance classification of MNIST digits, then begin your

experimentation with such a network. It'll be much faster than

training a [784, 30, 10] network, and you can build back up to the

latter.

You can get another speed up in experimentation by increasing the

frequency of monitoring. In network2.py we monitor performance at

the end of each training epoch. With 50,000 images per epoch, that

means waiting a little while - about ten seconds per epoch, on my

laptop, when training a [784, 30, 10] network - before getting

feedback on how well the network is learning. Of course, ten

seconds isn't very long, but if you want to trial dozens of hyper-

parameter choices it's annoying, and if you want to trial hundreds

or thousands of choices it starts to get debilitating. We can get

feedback more quickly by monitoring the validation accuracy more

often, say, after every 1,000 training images. Furthermore, instead

of using the full 10,000 image validation set to monitor

performance, we can get a much faster estimate using just 100

validation images. All that matters is that the network sees enough

images to do real learning, and to get a pretty good rough estimate

of performance. Of course, our program network2.py doesn't

currently do this kind of monitoring. But as a kludge to achieve a

similar effect for the purposes of illustration, we'll strip down our

training data to just the first 1,000 MNIST training images. Let's try

it and see what happens. (To keep the code below simple I haven't

implemented the idea of using only 0 and 1 images. Of course, that

can be done with just a little more work.)

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 10.0, lmbda = 1000.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 10 / 100

Epoch 1 training complete

Accuracy on evaluation data: 10 / 100

Epoch 2 training complete

Accuracy on evaluation data: 10 / 100

...
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We're still getting pure noise! But there's a big win: we're now

getting feedback in a fraction of a second, rather than once every

ten seconds or so. That means you can more quickly experiment

with other choices of hyper-parameter, or even conduct

experiments trialling many different choices of hyper-parameter

nearly simultaneously.

In the above example I left λ as λ = 1000.0, as we used earlier. But

since we changed the number of training examples we should really

change λ to keep the weight decay the same. That means changing λ

to 20.0. If we do that then this is what happens:

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 10.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 12 / 100

Epoch 1 training complete

Accuracy on evaluation data: 14 / 100

Epoch 2 training complete

Accuracy on evaluation data: 25 / 100

Epoch 3 training complete

Accuracy on evaluation data: 18 / 100

...

Ahah! We have a signal. Not a terribly good signal, but a signal

nonetheless. That's something we can build on, modifying the

hyper-parameters to try to get further improvement. Maybe we

guess that our learning rate needs to be higher. (As you perhaps

realize, that's a silly guess, for reasons we'll discuss shortly, but

please bear with me.) So to test our guess we try dialing η up to

100.0:

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 100.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 10 / 100

Epoch 1 training complete

Accuracy on evaluation data: 10 / 100

Epoch 2 training complete

Accuracy on evaluation data: 10 / 100
Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



Epoch 3 training complete

Accuracy on evaluation data: 10 / 100

...

That's no good! It suggests that our guess was wrong, and the

problem wasn't that the learning rate was too low. So instead we try

dialing η down to η = 1.0:

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 1.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 62 / 100

Epoch 1 training complete

Accuracy on evaluation data: 42 / 100

Epoch 2 training complete

Accuracy on evaluation data: 43 / 100

Epoch 3 training complete

Accuracy on evaluation data: 61 / 100

...

That's better! And so we can continue, individually adjusting each

hyper-parameter, gradually improving performance. Once we've

explored to find an improved value for η, then we move on to find a

good value for λ. Then experiment with a more complex

architecture, say a network with 10 hidden neurons. Then adjust the

values for η and λ again. Then increase to 20 hidden neurons. And

then adjust other hyper-parameters some more. And so on, at each

stage evaluating performance using our held-out validation data,

and using those evaluations to find better and better hyper-

parameters. As we do so, it typically takes longer to witness the

impact due to modifications of the hyper-parameters, and so we can

gradually decrease the frequency of monitoring.

This all looks very promising as a broad strategy. However, I want

to return to that initial stage of finding hyper-parameters that

enable a network to learn anything at all. In fact, even the above

discussion conveys too positive an outlook. It can be immensely

frustrating to work with a network that's learning nothing. You can

tweak hyper-parameters for days, and still get no meaningful
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response. And so I'd like to re-emphasize that during the early

stages you should make sure you can get quick feedback from

experiments. Intuitively, it may seem as though simplifying the

problem and the architecture will merely slow you down. In fact, it

speeds things up, since you much more quickly find a network with

a meaningful signal. Once you've got such a signal, you can often get

rapid improvements by tweaking the hyper-parameters. As with

many things in life, getting started can be the hardest thing to do.

Okay, that's the broad strategy. Let's now look at some specific

recommendations for setting hyper-parameters. I will focus on the

learning rate, η, the L2 regularization parameter, λ, and the mini-

batch size. However, many of the remarks apply also to other hyper-

parameters, including those associated to network architecture,

other forms of regularization, and some hyper-parameters we'll

meet later in the book, such as the momentum co-efficient.

Learning rate: Suppose we run three MNIST networks with three

different learning rates, η = 0.025, η = 0.25 and η = 2.5, respectively.

We'll set the other hyper-parameters as for the experiments in

earlier sections, running over 30 epochs, with a mini-batch size of

10, and with λ = 5.0. We'll also return to using the full 50, 000

training images. Here's a graph showing the behaviour of the

training cost as we train*: *The graph was generated by multiple_eta.py.
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With η = 0.025 the cost decreases smoothly until the final epoch.

With η = 0.25 the cost initially decreases, but after about 20 epochs

it is near saturation, and thereafter most of the changes are merely

small and apparently random oscillations. Finally, with η = 2.5 the

cost makes large oscillations right from the start. To understand the

reason for the oscillations, recall that stochastic gradient descent is

supposed to step us gradually down into a valley of the cost

function,

However, if η is too large then the steps will be so large that they

may actually overshoot the minimum, causing the algorithm to

climb up out of the valley instead. That's likely* what's causing the

cost to oscillate when η = 2.5. When we choose η = 0.25 the initial

steps do take us toward a minimum of the cost function, and it's

only once we get near that minimum that we start to suffer from the

overshooting problem. And when we choose η = 0.025 we don't

suffer from this problem at all during the first 30 epochs. Of course,

choosing η so small creates another problem, namely, that it slows

down stochastic gradient descent. An even better approach would

be to start with η = 0.25, train for 20 epochs, and then switch to

η = 0.025. We'll discuss such variable learning rate schedules later.

For now, though, let's stick to figuring out how to find a single good

value for the learning rate, η.

*This picture is helpful, but it's intended as an

intuition-building illustration of what may go on,

not as a complete, exhaustive explanation.

Briefly, a more complete explanation is as

follows: gradient descent uses a first-order

approximation to the cost function as a guide to

how to decrease the cost. For large η, higher-

order terms in the cost function become more

important, and may dominate the behaviour,

causing gradient descent to break down. This is

especially likely as we approach minima and

quasi-minima of the cost function, since near

such points the gradient becomes small, making

it easier for higher-order terms to dominate

behaviour.
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With this picture in mind, we can set η as follows. First, we estimate

the threshold value for η at which the cost on the training data

immediately begins decreasing, instead of oscillating or increasing.

This estimate doesn't need to be too accurate. You can estimate the

order of magnitude by starting with η = 0.01. If the cost decreases

during the first few epochs, then you should successively try

η = 0.1, 1.0, … until you find a value for η where the cost oscillates

or increases during the first few epochs. Alternately, if the cost

oscillates or increases during the first few epochs when η = 0.01,

then try η = 0.001, 0.0001, … until you find a value for η where the

cost decreases during the first few epochs. Following this procedure

will give us an order of magnitude estimate for the threshold value

of η. You may optionally refine your estimate, to pick out the largest

value of η at which the cost decreases during the first few epochs,

say η = 0.5 or η = 0.2 (there's no need for this to be super-accurate).

This gives us an estimate for the threshold value of η.

Obviously, the actual value of η that you use should be no larger

than the threshold value. In fact, if the value of η is to remain usable

over many epochs then you likely want to use a value for η that is

smaller, say, a factor of two below the threshold. Such a choice will

typically allow you to train for many epochs, without causing too

much of a slowdown in learning.

In the case of the MNIST data, following this strategy leads to an

estimate of 0.1 for the order of magnitude of the threshold value of η

. After some more refinement, we obtain a threshold value η = 0.5.

Following the prescription above, this suggests using η = 0.25 as our

value for the learning rate. In fact, I found that using η = 0.5 worked

well enough over 30 epochs that for the most part I didn't worry

about using a lower value of η.

This all seems quite straightforward. However, using the training

cost to pick η appears to contradict what I said earlier in this

section, namely, that we'd pick hyper-parameters by evaluating

performance using our held-out validation data. In fact, we'll use

validation accuracy to pick the regularization hyper-parameter, theLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



mini-batch size, and network parameters such as the number of

layers and hidden neurons, and so on. Why do things differently for

the learning rate? Frankly, this choice is my personal aesthetic

preference, and is perhaps somewhat idiosyncratic. The reasoning

is that the other hyper-parameters are intended to improve the final

classification accuracy on the test set, and so it makes sense to

select them on the basis of validation accuracy. However, the

learning rate is only incidentally meant to impact the final

classification accuracy. Its primary purpose is really to control the

step size in gradient descent, and monitoring the training cost is the

best way to detect if the step size is too big. With that said, this is a

personal aesthetic preference. Early on during learning the training

cost usually only decreases if the validation accuracy improves, and

so in practice it's unlikely to make much difference which criterion

you use.

Use early stopping to determine the number of training

epochs: As we discussed earlier in the chapter, early stopping

means that at the end of each epoch we should compute the

classification accuracy on the validation data. When that stops

improving, terminate. This makes setting the number of epochs

very simple. In particular, it means that we don't need to worry

about explicitly figuring out how the number of epochs depends on

the other hyper-parameters. Instead, that's taken care of

automatically. Furthermore, early stopping also automatically

prevents us from overfitting. This is, of course, a good thing,

although in the early stages of experimentation it can be helpful to

turn off early stopping, so you can see any signs of overfitting, and

use it to inform your approach to regularization.

To implement early stopping we need to say more precisely what it

means that the classification accuracy has stopped improving. As

we've seen, the accuracy can jump around quite a bit, even when the

overall trend is to improve. If we stop the first time the accuracy

decreases then we'll almost certainly stop when there are more

improvements to be had. A better rule is to terminate if the best

classification accuracy doesn't improve for quite some time.Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



Suppose, for example, that we're doing MNIST. Then we might elect

to terminate if the classification accuracy hasn't improved during

the last ten epochs. This ensures that we don't stop too soon, in

response to bad luck in training, but also that we're not waiting

around forever for an improvement that never comes.

This no-improvement-in-ten rule is good for initial exploration of

MNIST. However, networks can sometimes plateau near a

particular classification accuracy for quite some time, only to then

begin improving again. If you're trying to get really good

performance, the no-improvement-in-ten rule may be too

aggressive about stopping. In that case, I suggest using the no-

improvement-in-ten rule for initial experimentation, and gradually

adopting more lenient rules, as you better understand the way your

network trains: no-improvement-in-twenty, no-improvement-in-

fifty, and so on. Of course, this introduces a new hyper-parameter

to optimize! In practice, however, it's usually easy to set this hyper-

parameter to get pretty good results. Similarly, for problems other

than MNIST, the no-improvement-in-ten rule may be much too

aggressive or not nearly aggressive enough, depending on the

details of the problem. However, with a little experimentation it's

usually easy to find a pretty good strategy for early stopping.

We haven't used early stopping in our MNIST experiments to date.

The reason is that we've been doing a lot of comparisons between

different approaches to learning. For such comparisons it's helpful

to use the same number of epochs in each case. However, it's well

worth modifying network2.py to implement early stopping:

Problem

Modify network2.py so that it implements early stopping using a

no-improvement-in-n epochs strategy, where n is a parameter

that can be set.

Can you think of a rule for early stopping other than no-

improvement-in-n? Ideally, the rule should compromise

between getting high validation accuracies and not training tooLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



long. Add your rule to network2.py, and run three experiments

comparing the validation accuracies and number of epochs of

training to no-improvement-in-10.

Learning rate schedule: We've been holding the learning rate η

constant. However, it's often advantageous to vary the learning rate.

Early on during the learning process it's likely that the weights are

badly wrong. And so it's best to use a large learning rate that causes

the weights to change quickly. Later, we can reduce the learning

rate as we make more fine-tuned adjustments to our weights.

How should we set our learning rate schedule? Many approaches

are possible. One natural approach is to use the same basic idea as

early stopping. The idea is to hold the learning rate constant until

the validation accuracy starts to get worse. Then decrease the

learning rate by some amount, say a factor of two or ten. We repeat

this many times, until, say, the learning rate is a factor of 1,024 (or

1,000) times lower than the initial value. Then we terminate.

A variable learning schedule can improve performance, but it also

opens up a world of possible choices for the learning schedule.

Those choices can be a headache - you can spend forever trying to

optimize your learning schedule. For first experiments my

suggestion is to use a single, constant value for the learning rate.

That'll get you a good first approximation. Later, if you want to

obtain the best performance from your network, it's worth

experimenting with a learning schedule, along the lines I've

described*.

Exercise

Modify network2.py so that it implements a learning schedule

that: halves the learning rate each time the validation accuracy

satisfies the no-improvement-in-10 rule; and terminates when

the learning rate has dropped to 1/128 of its original value.

The regularization parameter, λ: I suggest starting initially

with no regularization (λ = 0.0), and determining a value for η, as

*A readable recent paper which demonstrates

the benefits of variable learning rates in

attacking MNIST is Deep, Big, Simple Neural

Nets Excel on Handwritten Digit Recognition, by

Dan Claudiu Cireșan, Ueli Meier, Luca Maria

Gambardella, and Jürgen Schmidhuber (2010).
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above. Using that choice of η, we can then use the validation data to

select a good value for λ. Start by trialling λ = 1.0*, and then

increase or decrease by factors of 10, as needed to improve

performance on the validation data. Once you've found a good order

of magnitude, you can fine tune your value of λ. That done, you

should return and re-optimize η again.

Exercise

It's tempting to use gradient descent to try to learn good values

for hyper-parameters such as λ and η. Can you think of an

obstacle to using gradient descent to determine λ? Can you

think of an obstacle to using gradient descent to determine η?

How I selected hyper-parameters earlier in this book: If

you use the recommendations in this section you'll find that you get

values for η and λ which don't always exactly match the values I've

used earlier in the book. The reason is that the book has narrative

constraints that have sometimes made it impractical to optimize the

hyper-parameters. Think of all the comparisons we've made of

different approaches to learning, e.g., comparing the quadratic and

cross-entropy cost functions, comparing the old and new methods

of weight initialization, running with and without regularization,

and so on. To make such comparisons meaningful, I've usually tried

to keep hyper-parameters constant across the approaches being

compared (or to scale them in an appropriate way). Of course,

there's no reason for the same hyper-parameters to be optimal for

all the different approaches to learning, so the hyper-parameters

I've used are something of a compromise.

As an alternative to this compromise, I could have tried to optimize

the heck out of the hyper-parameters for every single approach to

learning. In principle that'd be a better, fairer approach, since then

we'd see the best from every approach to learning. However, we've

made dozens of comparisons along these lines, and in practice I

found it too computationally expensive. That's why I've adopted the

compromise of using pretty good (but not necessarily optimal)

choices for the hyper-parameters.

*I don't have a good principled justification for

using this as a starting value. If anyone knows of

a good principled discussion of where to start

with λ, I'd appreciate hearing it

(mn@michaelnielsen.org).

Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



Mini-batch size: How should we set the mini-batch size? To

answer this question, let's first suppose that we're doing online

learning, i.e., that we're using a mini-batch size of 1.

The obvious worry about online learning is that using mini-batches

which contain just a single training example will cause significant

errors in our estimate of the gradient. In fact, though, the errors

turn out to not be such a problem. The reason is that the individual

gradient estimates don't need to be super-accurate. All we need is

an estimate accurate enough that our cost function tends to keep

decreasing. It's as though you are trying to get to the North

Magnetic Pole, but have a wonky compass that's 10-20 degrees off

each time you look at it. Provided you stop to check the compass

frequently, and the compass gets the direction right on average,

you'll end up at the North Magnetic Pole just fine.

Based on this argument, it sounds as though we should use online

learning. In fact, the situation turns out to be more complicated

than that. In a problem in the last chapter I pointed out that it's

possible to use matrix techniques to compute the gradient update

for all examples in a mini-batch simultaneously, rather than

looping over them. Depending on the details of your hardware and

linear algebra library this can make it quite a bit faster to compute

the gradient estimate for a mini-batch of (for example) size 100,

rather than computing the mini-batch gradient estimate by looping

over the 100 training examples separately. It might take (say) only

50 times as long, rather than 100 times as long.

Now, at first it seems as though this doesn't help us that much.

With our mini-batch of size 100 the learning rule for the weights

looks like:

w → w ′ = w − η
1
100

∑
x
∇Cx,

where the sum is over training examples in the mini-batch. This is

versus

w → w ′ = w − η∇Cx
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for online learning. Even if it only takes 50 times as long to do the

mini-batch update, it still seems likely to be better to do online

learning, because we'd be updating so much more frequently.

Suppose, however, that in the mini-batch case we increase the

learning rate by a factor 100, so the update rule becomes

w → w ′ = w − η∑
x
∇Cx.

That's a lot like doing 100 separate instances of online learning with

a learning rate of η. But it only takes 50 times as long as doing a

single instance of online learning. Of course, it's not truly the same

as 100 instances of online learning, since in the mini-batch the ∇Cx's

are all evaluated for the same set of weights, as opposed to the

cumulative learning that occurs in the online case. Still, it seems

distinctly possible that using the larger mini-batch would speed

things up.

With these factors in mind, choosing the best mini-batch size is a

compromise. Too small, and you don't get to take full advantage of

the benefits of good matrix libraries optimized for fast hardware.

Too large and you're simply not updating your weights often

enough. What you need is to choose a compromise value which

maximizes the speed of learning. Fortunately, the choice of mini-

batch size at which the speed is maximized is relatively independent

of the other hyper-parameters (apart from the overall architecture),

so you don't need to have optimized those hyper-parameters in

order to find a good mini-batch size. The way to go is therefore to

use some acceptable (but not necessarily optimal) values for the

other hyper-parameters, and then trial a number of different mini-

batch sizes, scaling η as above. Plot the validation accuracy versus

time (as in, real elapsed time, not epoch!), and choose whichever

mini-batch size gives you the most rapid improvement in

performance. With the mini-batch size chosen you can then proceed

to optimize the other hyper-parameters.

Of course, as you've no doubt realized, I haven't done this
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the faster approach to mini-batch updates at all. I've simply used a

mini-batch size of 10 without comment or explanation in nearly all

examples. Because of this, we could have sped up learning by

reducing the mini-batch size. I haven't done this, in part because I

wanted to illustrate the use of mini-batches beyond size 1, and in

part because my preliminary experiments suggested the speedup

would be rather modest. In practical implementations, however, we

would most certainly implement the faster approach to mini-batch

updates, and then make an effort to optimize the mini-batch size, in

order to maximize our overall speed.

Automated techniques: I've been describing these heuristics as

though you're optimizing your hyper-parameters by hand. Hand-

optimization is a good way to build up a feel for how neural

networks behave. However, and unsurprisingly, a great deal of work

has been done on automating the process. A common technique is

grid search, which systematically searches through a grid in hyper-

parameter space. A review of both the achievements and the

limitations of grid search (with suggestions for easily-implemented

alternatives) may be found in a 2012 paper* by James Bergstra and

Yoshua Bengio. Many more sophisticated approaches have also

been proposed. I won't review all that work here, but do want to

mention a particularly promising 2012 paper which used a Bayesian

approach to automatically optimize hyper-parameters*. The code

from the paper is publicly available, and has been used with some

success by other researchers.

Summing up: Following the rules-of-thumb I've described won't

give you the absolute best possible results from your neural

network. But it will likely give you a good start and a basis for

further improvements. In particular, I've discussed the hyper-

parameters largely independently. In practice, there are

relationships between the hyper-parameters. You may experiment

with η, feel that you've got it just right, then start to optimize for λ,

only to find that it's messing up your optimization for η. In practice,

it helps to bounce backward and forward, gradually closing in good

values. Above all, keep in mind that the heuristics I've described are

*Random search for hyper-parameter

optimization, by James Bergstra and Yoshua

Bengio (2012).

*Practical Bayesian optimization of machine

learning algorithms, by Jasper Snoek, Hugo

Larochelle, and Ryan Adams.
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rules of thumb, not rules cast in stone. You should be on the

lookout for signs that things aren't working, and be willing to

experiment. In particular, this means carefully monitoring your

network's behaviour, especially the validation accuracy.

The difficulty of choosing hyper-parameters is exacerbated by the

fact that the lore about how to choose hyper-parameters is widely

spread, across many research papers and software programs, and

often is only available inside the heads of individual practitioners.

There are many, many papers setting out (sometimes

contradictory) recommendations for how to proceed. However,

there are a few particularly useful papers that synthesize and distill

out much of this lore. Yoshua Bengio has a 2012 paper* that gives

some practical recommendations for using backpropagation and

gradient descent to train neural networks, including deep neural

nets. Bengio discusses many issues in much more detail than I have,

including how to do more systematic hyper-parameter searches.

Another good paper is a 1998 paper* by Yann LeCun, Léon Bottou,

Genevieve Orr and Klaus-Robert Müller. Both these papers appear

in an extremely useful 2012 book that collects many tricks

commonly used in neural nets*. The book is expensive, but many of

the articles have been placed online by their respective authors

with, one presumes, the blessing of the publisher, and may be

located using a search engine.

One thing that becomes clear as you read these articles and,

especially, as you engage in your own experiments, is that hyper-

parameter optimization is not a problem that is ever completely

solved. There's always another trick you can try to improve

performance. There is a saying common among writers that books

are never finished, only abandoned. The same is also true of neural

network optimization: the space of hyper-parameters is so large

that one never really finishes optimizing, one only abandons the

network to posterity. So your goal should be to develop a workflow

that enables you to quickly do a pretty good job on the optimization,

while leaving you the flexibility to try more detailed optimizations,

if that's important.

*Practical recommendations for gradient-based

training of deep architectures, by Yoshua Bengio

(2012).

*Efficient BackProp, by Yann LeCun, Léon

Bottou, Genevieve Orr and Klaus-Robert Müller

(1998)

*Neural Networks: Tricks of the Trade, edited by

Grégoire Montavon, Geneviève Orr, and Klaus-

Robert Müller.

Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-35288-1


The challenge of setting hyper-parameters has led some people to

complain that neural networks require a lot of work when

compared with other machine learning techniques. I've heard many

variations on the following complaint: "Yes, a well-tuned neural

network may get the best performance on the problem. On the

other hand, I can try a random forest [or SVM or… insert your own

favorite technique] and it just works. I don't have time to figure out

just the right neural network." Of course, from a practical point of

view it's good to have easy-to-apply techniques. This is particularly

true when you're just getting started on a problem, and it may not

be obvious whether machine learning can help solve the problem at

all. On the other hand, if getting optimal performance is important,

then you may need to try approaches that require more specialist

knowledge. While it would be nice if machine learning were always

easy, there is no a priori reason it should be trivially simple.

Other techniques
Each technique developed in this chapter is valuable to know in its

own right, but that's not the only reason I've explained them. The

larger point is to familiarize you with some of the problems which

can occur in neural networks, and with a style of analysis which can

help overcome those problems. In a sense, we've been learning how

to think about neural nets. Over the remainder of this chapter I

briefly sketch a handful of other techniques. These sketches are less

in-depth than the earlier discussions, but should convey some

feeling for the diversity of techniques available for use in neural

networks.

Variations on stochastic gradient descent

Stochastic gradient descent by backpropagation has served us well

in attacking the MNIST digit classification problem. However, there

are many other approaches to optimizing the cost function, and

sometimes those other approaches offer performance superior to

mini-batch stochastic gradient descent. In this section I sketch two

such approaches, the Hessian and momentum techniques.
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Hessian technique: To begin our discussion it helps to put

neural networks aside for a bit. Instead, we're just going to consider

the abstract problem of minimizing a cost function C which is a

function of many variables, w = w1, w2, …, so C = C(w). By Taylor's

theorem, the cost function can be approximated near a point w by

C(w + Δw) = C(w) + ∑
j

∂C
∂wj

Δwj

+
1
2
∑
jk

Δwj
∂2C

∂wj∂wk
Δwk + …

We can rewrite this more compactly as

C(w + Δw) = C(w) + ∇C ⋅ Δw +
1
2
ΔwTHΔw + …,

where ∇C is the usual gradient vector, and H is a matrix known as

the Hessian matrix, whose jkth entry is ∂2C /∂wj∂wk. Suppose we

approximate C by discarding the higher-order terms represented by

… above,

C(w + Δw) ≈ C(w) + ∇C ⋅ Δw +
1
2
ΔwTHΔw.

Using calculus we can show that the expression on the right-hand

side can be minimized* by choosing

Δw = − H −1∇C.

Provided (105) is a good approximate expression for the cost

function, then we'd expect that moving from the point w to

w + Δw = w − H −1∇C should significantly decrease the cost

function. That suggests a possible algorithm for minimizing the

cost:

Choose a starting point, w.

Update w to a new point w ′ = w − H −1∇C, where the Hessian H

and ∇C are computed at w.

*Strictly speaking, for this to be a minimum, and

not merely an extremum, we need to assume

that the Hessian matrix is positive definite.

Intuitively, this means that the function C looks

like a valley locally, not a mountain or a saddle.
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Update w ′  to a new point w ′ ′ = w ′ − H ′ − 1∇ ′C, where the

Hessian H ′  and ∇ ′C are computed at w ′ .

…

In practice, (105) is only an approximation, and it's better to take

smaller steps. We do this by repeatedly changing w by an amount

Δw = − ηH −1∇C, where η is known as the learning rate.

This approach to minimizing a cost function is known as the

Hessian technique or Hessian optimization. There are theoretical

and empirical results showing that Hessian methods converge on a

minimum in fewer steps than standard gradient descent. In

particular, by incorporating information about second-order

changes in the cost function it's possible for the Hessian approach

to avoid many pathologies that can occur in gradient descent.

Furthermore, there are versions of the backpropagation algorithm

which can be used to compute the Hessian.

If Hessian optimization is so great, why aren't we using it in our

neural networks? Unfortunately, while it has many desirable

properties, it has one very undesirable property: it's very difficult to

apply in practice. Part of the problem is the sheer size of the

Hessian matrix. Suppose you have a neural network with 107

weights and biases. Then the corresponding Hessian matrix will

contain 107 × 107 = 1014 entries. That's a lot of entries! And that

makes computing H −1∇C extremely difficult in practice. However,

that doesn't mean that it's not useful to understand. In fact, there

are many variations on gradient descent which are inspired by

Hessian optimization, but which avoid the problem with overly-

large matrices. Let's take a look at one such technique, momentum-

based gradient descent.

Momentum-based gradient descent: Intuitively, the

advantage Hessian optimization has is that it incorporates not just

information about the gradient, but also information about how the

gradient is changing. Momentum-based gradient descent is based

on a similar intuition, but avoids large matrices of secondLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



derivatives. To understand the momentum technique, think back to

our original picture of gradient descent, in which we considered a

ball rolling down into a valley. At the time, we observed that

gradient descent is, despite its name, only loosely similar to a ball

falling to the bottom of a valley. The momentum technique modifies

gradient descent in two ways that make it more similar to the

physical picture. First, it introduces a notion of "velocity" for the

parameters we're trying to optimize. The gradient acts to change the

velocity, not (directly) the "position", in much the same way as

physical forces change the velocity, and only indirectly affect

position. Second, the momentum method introduces a kind of

friction term, which tends to gradually reduce the velocity.

Let's give a more precise mathematical description. We introduce

velocity variables v = v1, v2, …, one for each corresponding wj

variable*. Then we replace the gradient descent update rule

w → w ′ = w − η∇C by

v → v ′ = μv − η∇C

w → w ′ = w + v ′ .

In these equations, μ is a hyper-parameter which controls the

amount of damping or friction in the system. To understand the

meaning of the equations it's helpful to first consider the case where

μ = 1, which corresponds to no friction. When that's the case,

inspection of the equations shows that the "force" ∇C is now

modifying the velocity, v, and the velocity is controlling the rate of

change of w. Intuitively, we build up the velocity by repeatedly

adding gradient terms to it. That means that if the gradient is in

(roughly) the same direction through several rounds of learning, we

can build up quite a bit of steam moving in that direction. Think, for

example, of what happens if we're moving straight down a slope:

*In a neural net the wj variables would, of

course, include all weights and biases.
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With each step the velocity gets larger down the slope, so we move

more and more quickly to the bottom of the valley. This can enable

the momentum technique to work much faster than standard

gradient descent. Of course, a problem is that once we reach the

bottom of the valley we will overshoot. Or, if the gradient should

change rapidly, then we could find ourselves moving in the wrong

direction. That's the reason for the μ hyper-parameter in (107). I

said earlier that μ controls the amount of friction in the system; to

be a little more precise, you should think of 1 − μ as the amount of

friction in the system. When μ = 1, as we've seen, there is no

friction, and the velocity is completely driven by the gradient ∇C. By

contrast, when μ = 0 there's a lot of friction, the velocity can't build

up, and Equations (107) and (108) reduce to the usual equation for

gradient descent, w → w ′ = w − η∇C. In practice, using a value of μ

intermediate between 0 and 1 can give us much of the benefit of

being able to build up speed, but without causing overshooting. We

can choose such a value for μ using the held-out validation data, in

much the same way as we select η and λ.

I've avoided naming the hyper-parameter μ up to now. The reason

is that the standard name for μ is badly chosen: it's called the

momentum co-efficient. This is potentially confusing, since μ is not

at all the same as the notion of momentum from physics. Rather, it
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is much more closely related to friction. However, the term

momentum co-efficient is widely used, so we will continue to use it.

A nice thing about the momentum technique is that it takes almost

no work to modify an implementation of gradient descent to

incorporate momentum. We can still use backpropagation to

compute the gradients, just as before, and use ideas such as

sampling stochastically chosen mini-batches. In this way, we can

get some of the advantages of the Hessian technique, using

information about how the gradient is changing. But it's done

without the disadvantages, and with only minor modifications to

our code. In practice, the momentum technique is commonly used,

and often speeds up learning.

Exercise

What would go wrong if we used μ > 1 in the momentum

technique?

What would go wrong if we used μ < 0 in the momentum

technique?

Problem

Add momentum-based stochastic gradient descent to

network2.py.

Other approaches to minimizing the cost function: Many

other approaches to minimizing the cost function have been

developed, and there isn't universal agreement on which is the best

approach. As you go deeper into neural networks it's worth digging

into the other techniques, understanding how they work, their

strengths and weaknesses, and how to apply them in practice. A

paper I mentioned earlier* introduces and compares several of

these techniques, including conjugate gradient descent and the

BFGS method (see also the closely related limited-memory BFGS

method, known as L-BFGS). Another technique which has recently

shown promising results* is Nesterov's accelerated gradient

technique, which improves on the momentum technique. However,

*Efficient BackProp, by Yann LeCun, Léon

Bottou, Genevieve Orr and Klaus-Robert Müller

(1998).
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for many problems, plain stochastic gradient descent works well,

especially if momentum is used, and so we'll stick to stochastic

gradient descent through the remainder of this book.

Other models of artificial neuron

Up to now we've built our neural networks using sigmoid neurons.

In principle, a network built from sigmoid neurons can compute

any function. In practice, however, networks built using other

model neurons sometimes outperform sigmoid networks.

Depending on the application, networks based on such alternate

models may learn faster, generalize better to test data, or perhaps

do both. Let me mention a couple of alternate model neurons, to

give you the flavor of some variations in common use.

Perhaps the simplest variation is the tanh (pronounced "tanch")

neuron, which replaces the sigmoid function by the hyperbolic

tangent function. The output of a tanh neuron with input x, weight

vector w, and bias b is given by

tanh(w ⋅ x + b),

where tanh is, of course, the hyperbolic tangent function. It turns

out that this is very closely related to the sigmoid neuron. To see

this, recall that the tanh function is defined by

tanh(z) ≡
ez − e − z

ez + e − z
.

With a little algebra it can easily be verified that

σ(z) =
1 + tanh(z /2)

2
,

that is, tanh is just a rescaled version of the sigmoid function. We

can also see graphically that the tanh function has the same shape as

the sigmoid function,

by Ilya Sutskever, James Martens, George Dahl,

and Geoffrey Hinton (2012).

Loading [MathJax]/jax/element/mml/optable/BasicLatin.js



-4 -3 -2 -1 0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

z

tanh function

One difference between tanh neurons and sigmoid neurons is that

the output from tanh neurons ranges from -1 to 1, not 0 to 1. This

means that if you're going to build a network based on tanh neurons

you may need to normalize your outputs (and, depending on the

details of the application, possibly your inputs) a little differently

than in sigmoid networks.

Similar to sigmoid neurons, a network of tanh neurons can, in

principle, compute any function* mapping inputs to the range -1 to

1. Furthermore, ideas such as backpropagation and stochastic

gradient descent are as easily applied to a network of tanh neurons

as to a network of sigmoid neurons.

Exercise

Prove the identity in Equation (111).

Which type of neuron should you use in your networks, the tanh or

sigmoid? A priori the answer is not obvious, to put it mildly!

However, there are theoretical arguments and some empirical

evidence to suggest that the tanh sometimes performs better*. Let

me briefly give you the flavor of one of the theoretical arguments for

tanh neurons. Suppose we're using sigmoid neurons, so all

activations in our network are positive. Let's consider the weights

wl+1
jk  input to the jth neuron in the l + 1th layer. The rules for

backpropagation (see here) tell us that the associated gradient will

be alkδ
l+1
j . Because the activations are positive the sign of this

gradient will be the same as the sign of δl+1j . What this means is

*There are some technical caveats to this

statement for both tanh and sigmoid neurons, as

well as for the rectified linear neurons discussed

below. However, informally it's usually fine to

think of neural networks as being able to

approximate any function to arbitrary accuracy.

*See, for example, Efficient BackProp, by Yann

LeCun, Léon Bottou, Genevieve Orr and Klaus-

Robert Müller (1998), and Understanding the

difficulty of training deep feedforward networks,

by Xavier Glorot and Yoshua Bengio (2010).
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that if δl+1j  is positive then all the weights wl+1
jk  will decrease during

gradient descent, while if δl+1j  is negative then all the weights wl+1
jk

will increase during gradient descent. In other words, all weights to

the same neuron must either increase together or decrease together.

That's a problem, since some of the weights may need to increase

while others need to decrease. That can only happen if some of the

input activations have different signs. That suggests replacing the

sigmoid by an activation function, such as tanh, which allows both

positive and negative activations. Indeed, because tanh is symmetric

about zero, tanh( − z) = − tanh(z), we might even expect that,

roughly speaking, the activations in hidden layers would be equally

balanced between positive and negative. That would help ensure

that there is no systematic bias for the weight updates to be one way

or the other.

How seriously should we take this argument? While the argument

is suggestive, it's a heuristic, not a rigorous proof that tanh neurons

outperform sigmoid neurons. Perhaps there are other properties of

the sigmoid neuron which compensate for this problem? Indeed, for

many tasks the tanh is found empirically to provide only a small or

no improvement in performance over sigmoid neurons.

Unfortunately, we don't yet have hard-and-fast rules to know which

neuron types will learn fastest, or give the best generalization

performance, for any particular application.

Another variation on the sigmoid neuron is the rectified linear

neuron or rectified linear unit. The output of a rectified linear unit

with input x, weight vector w, and bias b is given by max

Graphically, the rectifying function \max(0, z) looks like this:
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Obviously such neurons are quite different from both sigmoid and

tanh neurons. However, like the sigmoid and tanh neurons,

rectified linear units can be used to compute any function, and they

can be trained using ideas such as backpropagation and stochastic

gradient descent.

When should you use rectified linear units instead of sigmoid or

tanh neurons? Some recent work on image recognition* has found

considerable benefit in using rectified linear units through much of

the network. However, as with tanh neurons, we do not yet have a

really deep understanding of when, exactly, rectified linear units are

preferable, nor why. To give you the flavor of some of the issues,

recall that sigmoid neurons stop learning when they saturate, i.e.,

when their output is near either 0 or 1. As we've seen repeatedly in

this chapter, the problem is that \sigma' terms reduce the gradient,

and that slows down learning. Tanh neurons suffer from a similar

problem when they saturate. By contrast, increasing the weighted

input to a rectified linear unit will never cause it to saturate, and so

there is no corresponding learning slowdown. On the other hand,

when the weighted input to a rectified linear unit is negative, the

gradient vanishes, and so the neuron stops learning entirely. These

are just two of the many issues that make it non-trivial to

understand when and why rectified linear units perform better than

sigmoid or tanh neurons.

*See, for example, What is the Best Multi-Stage

Architecture for Object Recognition?, by Kevin

Jarrett, Koray Kavukcuoglu, Marc'Aurelio

Ranzato and Yann LeCun (2009), Deep Sparse

Rectifier Neural Networks, by Xavier Glorot,

Antoine Bordes, and Yoshua Bengio (2011), and

ImageNet Classification with Deep

Convolutional Neural Networks, by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton

(2012). Note that these papers fill in important

details about how to set up the output layer, cost

function, and regularization in networks using

rectified linear units. I've glossed over all these

details in this brief account. The papers also

discuss in more detail the benefits and

drawbacks of using rectified linear units.

Another informative paper is Rectified Linear

Units Improve Restricted Boltzmann Machines,

by Vinod Nair and Geoffrey Hinton (2010),

which demonstrates the benefits of using

rectified linear units in a somewhat different

approach to neural networks.
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I've painted a picture of uncertainty here, stressing that we do not

yet have a solid theory of how activation functions should be

chosen. Indeed, the problem is harder even than I have described,

for there are infinitely many possible activation functions. Which is

the best for any given problem? Which will result in a network

which learns fastest? Which will give the highest test accuracies? I

am surprised how little really deep and systematic investigation has

been done of these questions. Ideally, we'd have a theory which tells

us, in detail, how to choose (and perhaps modify-on-the-fly) our

activation functions. On the other hand, we shouldn't let the lack of

a full theory stop us! We have powerful tools already at hand, and

can make a lot of progress with those tools. Through the remainder

of this book I'll continue to use sigmoid neurons as our go-to

neuron, since they're powerful and provide concrete illustrations of

the core ideas about neural nets. But keep in the back of your mind

that these same ideas can be applied to other types of neuron, and

that there are sometimes advantages in doing so.

On stories in neural networks

Question: How do you approach utilizing and

researching machine learning techniques that are

supported almost entirely empirically, as opposed to

mathematically? Also in what situations have you noticed

some of these techniques fail?

Answer: You have to realize that our theoretical tools are

very weak. Sometimes, we have good mathematical

intuitions for why a particular technique should work.

Sometimes our intuition ends up being wrong [...] The

questions become: how well does my method work on this

particular problem, and how large is the set of problems

on which it works well.

- Question and answer with neural networks researcher

Yann LeCun
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Once, attending a conference on the foundations of quantum

mechanics, I noticed what seemed to me a most curious verbal

habit: when talks finished, questions from the audience often began

with "I'm very sympathetic to your point of view, but [...]".

Quantum foundations was not my usual field, and I noticed this

style of questioning because at other scientific conferences I'd rarely

or never heard a questioner express their sympathy for the point of

view of the speaker. At the time, I thought the prevalence of the

question suggested that little genuine progress was being made in

quantum foundations, and people were merely spinning their

wheels. Later, I realized that assessment was too harsh. The

speakers were wrestling with some of the hardest problems human

minds have ever confronted. Of course progress was slow! But there

was still value in hearing updates on how people were thinking,

even if they didn't always have unarguable new progress to report.

You may have noticed a verbal tic similar to "I'm very sympathetic

[...]" in the current book. To explain what we're seeing I've often

fallen back on saying "Heuristically, [...]", or "Roughly speaking,

[...]", following up with a story to explain some phenomenon or

other. These stories are plausible, but the empirical evidence I've

presented has often been pretty thin. If you look through the

research literature you'll see that stories in a similar style appear in

many research papers on neural nets, often with thin supporting

evidence. What should we think about such stories?

In many parts of science - especially those parts that deal with

simple phenomena - it's possible to obtain very solid, very reliable

evidence for quite general hypotheses. But in neural networks there

are large numbers of parameters and hyper-parameters, and

extremely complex interactions between them. In such

extraordinarily complex systems it's exceedingly difficult to

establish reliable general statements. Understanding neural

networks in their full generality is a problem that, like quantum

foundations, tests the limits of the human mind. Instead, we often

make do with evidence for or against a few specific instances of a

general statement. As a result those statements sometimes laterLoading [MathJax]/jax/element/mml/optable/BasicLatin.js



need to be modified or abandoned, when new evidence comes to

light.

One way of viewing this situation is that any heuristic story about

neural networks carries with it an implied challenge. For example,

consider the statement I quoted earlier, explaining why dropout

works*: "This technique reduces complex co-adaptations of

neurons, since a neuron cannot rely on the presence of particular

other neurons. It is, therefore, forced to learn more robust features

that are useful in conjunction with many different random subsets

of the other neurons." This is a rich, provocative statement, and one

could build a fruitful research program entirely around unpacking

the statement, figuring out what in it is true, what is false, what

needs variation and refinement. Indeed, there is now a small

industry of researchers who are investigating dropout (and many

variations), trying to understand how it works, and what its limits

are. And so it goes with many of the heuristics we've discussed.

Each heuristic is not just a (potential) explanation, it's also a

challenge to investigate and understand in more detail.

Of course, there is not time for any single person to investigate all

these heuristic explanations in depth. It's going to take decades (or

longer) for the community of neural networks researchers to

develop a really powerful, evidence-based theory of how neural

networks learn. Does this mean you should reject heuristic

explanations as unrigorous, and not sufficiently evidence-based?

No! In fact, we need such heuristics to inspire and guide our

thinking. It's like the great age of exploration: the early explorers

sometimes explored (and made new discoveries) on the basis of

beliefs which were wrong in important ways. Later, those mistakes

were corrected as we filled in our knowledge of geography. When

you understand something poorly - as the explorers understood

geography, and as we understand neural nets today - it's more

important to explore boldly than it is to be rigorously correct in

every step of your thinking. And so you should view these stories as

a useful guide to how to think about neural nets, while retaining a

healthy awareness of the limitations of such stories, and carefully

*From ImageNet Classification with Deep

Convolutional Neural Networks by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton

(2012).
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keeping track of just how strong the evidence is for any given line of

reasoning. Put another way, we need good stories to help motivate

and inspire us, and rigorous in-depth investigation in order to

uncover the real facts of the matter.
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