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Our geometric intuition developed in our three-dimensional world often fails us in higher
dimensions. Many properties of even simple objects, such as higher dimensional analogs of cubes
and spheres, are very counterintuitive. Below we discuss just a few of these properties in an
attempt to convey some of the weirdness of high dimensional space.

You may be used to using the word "circle" in two dimensions and "sphere" in three dimensions.
However, in higher dimensions we generally just use the word sphere, or -sphere when the
dimension of the sphere is not clear from context. With this terminology, a circle is also called a 1-
sphere, for a 1-dimensional sphere. A standard sphere in three dimensions is called a 2-sphere,
and so on. This sometimes causes confusion, because a -sphere is usually thought of as existing
in -dimensional space. When we say -sphere, the value of  refers to the dimension of
the sphere locally on the object, not the dimension in which it lives. Similarly we'll often use the
word cube for a square, a standard cube, and its higher dimensional analogues.

Escaping Spheres

Consider a square with side length 1. At each corner of the square place a circle of radius , so
that the circles cover the edges of the square. Then consider the circle centered at the center of
the square that is just large enough to touch the circles at the corners of the square. In two
dimensions it's clear that the inner circle is entirely contained in the square.
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Figure 1: At each corner of the square we place a circle of radius . The inner circle is just large
enough to touch the circles at the corners.

We can do the same thing in three dimensions. At each corner of the unit cube place a sphere of
radius , again covering the edges of the cube. The sphere centered at the center of the cube
and tangent to spheres at the corners of the cube is shown in red in Figure 2. Again we see that, in
three dimensions, the inner sphere is entirely contained in the cube.

Figure 2: In three dimensions we place a sphere at the each of the eight corners of a cube.

To understand what happens in higher dimensions we need to compute the radius of the inner
sphere in terms of the dimension. The radius of the inner sphere is equal to the length of the
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diagonal of the cube minus the radius of the spheres at the corners. See Figure 3. The latter value
is always , regardless of the dimension. We can compute the length of the diagonal as

Thus the radius of the inner sphere is . Notice that the radius of the inner sphere is
increasing with the dimension!

Figure 3: The size of the radius of the inner sphere is growing as the dimension increases
because the distance to the corner increases while the radius of the corner sphere remains

constant.

In dimensions two and three, the sphere is strictly inside the cube, as we've seen in the figures
above. However in four dimensions something very interesting happens. The radius of the inner
sphere is exactly , which is just large enough for the inner sphere to touch the sides of the
cube! In five dimensions, the radius of the inner sphere is , and the sphere starts poking
outside of the cube! By ten dimensions, the radius is  and the sphere is poking very far
outside of the cube!
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Volume in High Dimensions

The area of a circle , where  is the radius. Given the equation for the area of a circle,
we can compute the volume of a sphere by considering cross sections of the sphere. That is, we
intersect the sphere with a plane at some height  above the center of the sphere.

Figure 4: Intersecting the sphere with a plane gives a circle.

The intersection between a sphere and a plane is a circle. If we look at the sphere from a side
view, as shown in Figure 5, we see that the radius can be computed using the Pythagorean
theorem ( ). The radius of the circle is .

Figure 5: A side view of Figure 4. The radius of the circle defined by the intersection can be found
using the Pythagorean theorem.

Summing up the area of each cross section from the bottom of the sphere to the top of the sphere
gives the volume

A(r) = πr2 r

h

a2 + b2 = c2 √r2 − h2



Now that we know the volume of the -sphere, we can compute the volume of the -sphere in a
similar way. The only difference is where before we used the equation for the area of a circle, we
instead use the equation for the volume of the -sphere. The general formula for the volume of a 
-sphere is approximately

(Approximately because the denominator should be the Gamma function, but that's not important
for understanding the intuition.)

Set  and consider the volume of the unit -sphere as  increases. The plot of the volume is
shown in Figure 6.

Figure 6: The volume of the unit -sphere goes to 0 as  increases!
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The volume of the unit -sphere goes to 0 as  grows! A high dimensional unit sphere encloses
almost no volume! The volume increases from dimensions one to five, but begins decreasing
rapidly toward 0 after dimension six.

More Accurate Pictures

Given the rather unexpected properties of high dimensional cubes and spheres, I hope that you'll
agree that the following are somewhat more accurate pictorial representations.

Figure 7: More accurate pictorial representations of high dimensional cubes (left) and spheres
(right).

Notice that the corners of the cube are much further away from the center than are the sides. The
-sphere is drawn so that it contains almost no volume but still has radius 1. This image also

suggests the next counterintuitive property of high dimensional spheres.

Concentration of Measure

Suppose that you wanted to place a band around the equator of the unit sphere so that, say, 99%
of the surface area of the sphere falls within that band. See Figure 8. How large do you think that
band would have to be?
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Figure 8: In two dimensions a the width of a band around the equator must be very large to
contain 99% of the perimeter.

In two dimensions the width of the band needs to be pretty large, indeed nearly 2, to capture 99%
of the perimeter of the unit circle. However as the dimension increases the width of the band
needed to capture 99% of the surface area gets smaller. In very high dimensional space nearly all
of the surface area of the sphere lies a very small distance away from the equator!

Figure 9: As the dimension increases the width of the band necessary to capture 99% of the
surface area decreases rapidly. Nearly all of the surface area of a high dimensional sphere lies

near the equator.

To provide some intuition consider the situation in two dimensions, as shown in Figure 10. For a
point on the circle to be close to the equator, its -coordinate must be small.y



Figure 10: Points near the equator have small y coordinate.

What happens to the values of the coordinates as the dimensions increases? Figure 11 is a plot of
20000 random points sampled uniformly from a -sphere. As  increases the values become more
and more concentrated around 0.

Figure 11: As the dimension increases the coordinates become increasingly concentrated around
0.
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Recall that every point on a -sphere must satisfy the equation .
Intuitively as  increases the number of terms in the sum increases, and each coordinate gets a
smaller share of the single unit, on the average.

The really weird thing is that any choice of "equator" works! It must, since the sphere is, well,
spherically symmetrical. We could have just as easily have chosen any of the options shown in
Figure 12.

Figure 12: Any choice of equator works equally well!

Kissing Numbers

Consider a unit circle in the plane, shown in Figure 13 in red. The blue circle is said to kiss the red
circle if it just barely touches the red circle. (Leave it to mathematicians to think that barely touching
is a desirable property of a kiss.) The kissing number is the maximum number of non-overlapping
blue circles that can simultaneously kiss the red circle.

Figure 13: The kissing number is six in two dimensions.
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In two dimensions it's easy to see that the kissing number is 6. The entire proof is shown in Figure
14. The proof is by contradiction. Assume that more than six non-overlapping blue circles can
simultaneously kiss the red circle. We draw the edges from the center of the red circle to the
centers of the blue circles, as shown in Figure 14. The angles between these edges must sum to
exactly . Since there are more than six angles, at least one must be less than . The
resulting triangle, shown in Figure 14, is an isosceles triangle. The side opposite the angle that is
less than  must be strictly shorter than the other two sides, which are  in length. Thus the
centers of the two circles must be closer than  and the circles must overlap, which is a
contradiction.

Figure 14: A proof that the kissing number is six in two dimensions. If more than six blue circles
can kiss the red, then one of the angles must be less than 60 degrees. It follows that the two blue

circles that form that angle must overlap, which is a contradiction.

It is more difficult to see that in three dimensions the kissing number is 12. Indeed this was
famously disputed between Isaac Newton, who correctly thought the kissing number was 12, and
David Gregory, who thought it was 13. (Never bet against Newton.) Looking at the optimal
configuration, it's easy to see why Gregory thought it might be possible to fit a 13th sphere in the
space between the other 12. As the dimension increases there is suddenly even more space
between neighboring spheres and the problem becomes even more difficult.
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Figure 15: The kissing number is 12 in three dimensions.

In fact, there are very few dimensions where we know the kissing number exactly. In most
dimensions we only have an upper and lower bound on the kissing number, and these bounds can
vary by as much as several thousand spheres!

Dimension Lower Bound Upper Bound

1 2 2

2 6 6

3 12 12

4 24 24

5 40 44

6 72 78

7 126 134

8 240 240

9 306 364

10 500 554

11 582 870



12 840 1357

13 1154 2069

14 1606 3183

15 2564 4866

16 4320 7355

17 5346 11072

18 7398 16572

19 10668 24812

20 17400 36764

21 27720 54584

22 49896 82340

23 93150 124416

24 196560 196560

As shown in the table, we only know the kissing number exactly in dimensions one through four,
eight, and twenty-four. The eight and twenty-four dimensional cases follow from special lattice
structures that are known to give optimal packings. In eight dimensions the kissing number is 240,
given by the  lattice. In twenty-four dimensions the kissing number is 196560, given by the
Leech lattice. And not a single sphere more.

This post accompanies a talk given to high school students through Berkeley Splash. Thus
intuition is prioritized over mathematical rigor, language is abused, and details are laboriously
spelled out. If you're interested in more rigorous treatments of the presented material, please
feel free to contact me.

E8

https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/E8_lattice
https://en.wikipedia.org/wiki/Leech_lattice

