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4 Soft-Margin Support Vector Machines; Features

SOFT-MARGIN SUPPORT VECTOR MACHINES (SVMs)

Solves 2 problems:
— Hard-margin SVMs fail if data not linearly separable.
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- sensitive to outliers.
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sensitive.pdf (ISL, Figure 9.5) ‘ [Example where one outlier moves the hard-margin SVM
decision boundary a Iot.]

Idea: Allow some points to violate the margin, with slack variables.
Modified constraint for point i:

yilXi-w+a)21-§
[Observe that the only difference between these constraints and the hard-margin constraints we saw last

lecture is the extra slack term &;.]
[We also impose new constraints, that the slack variables are never negative.]

& 20

[This inequality ensures that all sample points that don’t violate the margin are treated the same; they all
have &; = 0. Point i has nonzero &; if and only if it violates the margin.]

slacker+.pdf | [A margin where some points have slack.]

Re-define “margin” to be 1/[|w||. [For soft-margin SVMs, the margin is no longer the distance from the
decision boundary to the nearest training point; instead, it’s 1/||w||.]
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To prevent abuse of slack, we add a loss term to objective fn.
Optimization problem:
Find w, a, and & that minimize |w|* + C ¥, &
subjectto  y;(X;-w+a)>1-¢ forallie[l,n]

&E=>0 foralli € [1,n]
...a quadratic program in d + n + 1 dimensions and 2n constraints.
[It’s a quadratic program because its objective function is quadratic and its constraints are linear inequalities. ]

C > 0 is a scalar regularization hyperparameter that trades off:

small C big C
desire maximize margin 1/||w|| | keep most slack variables zero or small
danger underfitting overfitting
(misclassifies much (awesome training, awful test)
training data)
outliers less sensitive very sensitive
boundary | more “flat” more sinuous

[The last row only applies to nonlinear decision boundaries, which we’ll discuss next. Obviously, a linear
decision boundary can’t be “sinuous.”]

Use validation to choose C.

svmC.pdf (ISL, Figure 9.7) | [Examples of how the slab varies with C. Smallest C at upper
left; largest C at lower right.]

[One way to think about slack is to pretend that slack is money we can spend to buy permission for a sample
point to violate the margin. The further a point penetrates the margin, the bigger the fine you have to pay.
We want to make the margin as wide as possible, but we also want to spend as little money as possible. If
the regularization parameter C is small, it means we’re willing to spend lots of money on violations so we
can get a wider margin. If C is big, it means we’re cheap and we won’t pay much for violations, even though
we’ll suffer a narrower margin. If C is infinite, we’re back to a hard-margin SVM.]
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FEATURES

Q: How to do nonlinear decision boundaries?

A: Make nonlinear features that lift points into a higher-dimensional space.
High-d linear classifier — low-d nonlinear classifier.

[Features work with all classifiers—not only linear classifiers like perceptrons and SVMs, but also classifiers
that are not linear.]

Example 1: The parabolic lifting map

d - Rd N Rd+l
d(x) = [ “;”2 ] « lifts x onto paraboloid x4, = llx]?

[We’ve added one new feature, ||x||>. Even though the new feature is just a function of other input features,
it gives our linear classifier more power. Now an SVM can have spheres as decision boundaries.]

Find a linear classifier in ®-space.
It induces a sphere classifier in x-space.

X X c : .
v [Draw this by hand. | circledec.pdf ||

Theorem: (X)), ..., D(X,) are linearly separable iff X1, ..., X, are separable by a hypersphere.
(Possibly an co-radius hypersphere = hyperplane.)

Proof: Consider hypersphere in R? w/center ¢ & radius p. x is inside iff

2 2
lx—cll”<p

2 2 2
xll” = 2¢ - x +flell” < p

X
-2¢7 1 <p? = el
(2" 1) [”xnz} P = el
normal vector in R4+! ~— —
D(x)
Hence points inside sphere < lifted points underneath hyperplane in ®-space.
[The implication works in both directions.]

[Hyperspheres include hyperplanes as a special, degenerate case. A hyperplane is essentially a hypersphere
with infinite radius. So hypersphere decision boundaries can do everything hyperplane decision boundaries
can do, plus a lot more. With the parabolic lifting map, if you pick a hyperplane in ®-space that is vertical,
you get a hyperplane in x-space.]
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Example 2: Ellipsoid/hyperboloid/paraboloid decision boundaries

[Draw 2D examples of ellipse & hyperbola.]

In 3D, these have the formula
Ax% + Bx% + Cx% + Dxixo+ Expxs + Fxzx1 +Gx1 + Hxy + Ixs +a =0

[Here, the capital letters are scalars, not matrices.]
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quadrics.png (courtesy Rahul Narain) ‘ [Quadrics in 3D.]

[If we add all the quadratic monomials as features, our decision boundaries can be arbitrary ellipsoids,
hyperboloids, and paraboloids.]

[For perceptron or regression, add a

D) = [ 2 2 T _ adi
W= % ¥ e s an n N xn 1 at end. For SVM, the 1 is built-in.]

Decision functionis [A B C D E F G H I]-®dx)+a

wT

[Now, our decision function can be any degree-2 polynomial.]

Isosurface defined by this equation is called a quadric.

A linear decision boundary in ®-space imposes a quadric decision boundary in x-space.

[The word quadric just means an isosurface of a degree-2 polynomial. In the special case of two dimensions,
it’s also known as a conic section. Our decision boundary can be an arbitrary ellipsoid, hyperboloid, or
paraboloid.]

[When d is large, there are order-d> cross-terms in ®-space! So we are adding a lot of new features. This
will impose a serious computational cost on a classifier like a support vector machine. But it might be worth
it to find good classifiers for data that aren’t linearly separable.]

O(x): R - R@*+3d)/2 [For perceptron or regression, add 1 for the fictitious dimension.]

[If all these extra features make the classifier overfit or make it too slow, you can leave out the cross-terms
and include only quadratic terms like x%, x%, etc. Then the number of added features is linear in d, not
quadratic in d. If you do that, your decision boundaries can be axis-aligned ellipsoids and axis-aligned
hyperboloids, but they can’t be rotated in arbitrary ways.]
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Example 3: Decision fn is degree-p polynomial

E.g., a cubic in R?:

3002 2 3 2 2 T
Ox)=[x; xix2 x1x;3 x, x| x1x2 X5 X1 Xx2]

O(x) : RY - RO

[Now we’re really blowing up the number of features! If you have, say, 100 features per sample point and
you want to use degree-4 decision functions, then each lifted feature vector has a length of roughly 4 million,
and your learning algorithm will take approximately forever to run.]

[However, later in the semester we will learn an extremely clever trick that allows us to work with these
huge feature vectors very quickly, without ever computing them. It’s called “kernelization” or “the kernel
trick.” So even though it appears now that working with degree-4 polynomials is computationally infeasible,
it can actually be done quickly.]

Linear Kermel Polynomial Kernel d=2
100% T T T 100%

Polynomial Kernel d=5
T T T

degree5.pdf | [Hard-margin SVMs with degree 1/2/5 decision functions. Observe that the

margin tends to get wider as the degree increases.]

[Increasing the degree like this accomplishes two things.
— First, the data might become linearly separable when you lift them to a high enough degree, even if
the original data are not linearly separable.
— Second, raising the degree can widen the margin, so you might get a more robust decision boundary
that generalizes better to test data.

However, if you raise the degree too high, you will overfit the data and then generalization will get worse.]
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vho(z) = g(0p + 011 + 02.172) g(90 + 60121 + O229 !](0() + 0121 + 92317%

. 5 2 e P ) Pt
(g = sigmoid function) +03ll T 94.1)2 +93.I%.I,% + 04.1,'1;.1.2
+0512) +0szixs + OsxiT2 + . ..
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[Training vs. test error for degree 1/2/5 decision functions. (Artist’s conception;
these aren’t actual calculations, just hand-drawn guesses. Please send me email if you know
where to find figures like this with actual data.) In this example, a degree-2 decision gives
the smallest test error. ]

0 1 1 1

[You should search for the ideal degree—not too small, not too big. It’s a balancing act between underfitting
and overfitting. The degree is an example of a hyperparameter that can be optimized by validation.]

[If you’re using both polynomial features and a soft-margin SVM, now you have two hyperparameters:
the degree and the regularization hyperparameter C. Generally, the optimal C will be different for every
polynomial degree, so when you change the degree, you should run validation again to find the best C for
that degree.]
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[So far I’ve talked only about polynomial features. But features can get much more complicated than
polynomials, and they can be tailored to fit a specific problem. Let’s consider a type of feature you might
use if you wanted to implement, say, a handwriting recognition algorithm.]

Example 5: Edge detection

Edge detector: algorithm for approximating grayscale/color gradients in image, e.g.,
— tap filter
— Sobel filter
— oriented Gaussian derivative filter
[images are discrete, not continuous fields, so approximation of gradients is necessary.]

[See “Image Derivatives” on Wikipedia.]

Collect line orientations in local histograms (each having 12 orientation bins per region); use histograms as
features (instead of raw pixels).

_ Histogram of Oriented Gradients
Input image
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Paper: Maji & Malik, 2009.

[If you want to, optionally, use these features in future homeworks and try to win the Kaggle competition,
this paper is a good online resource. ]

[When they use a linear SVM on the raw pixels, Maji & Malik get an error rate of 15.38% on the test set.
When they use a linear SVM on the histogram features, the error rate goes down to 2.64%.]

[Many applications can be improved by designing application-specific features. There’s no limit but your
own creativity and ability to discern the structure hidden in your application.]



