
Machine Learning Abstractions and Numerical Optimization 25

5 Machine Learning Abstractions and Numerical Optimization

ML ABSTRACTIONS [some meta comments on machine learning]

[When you write a large computer program, you break it down into subroutines and modules. Many of you
know from experience that you need to have the discipline to impose strong abstraction barriers between
di↵erent modules, or your program will become so complex you can no longer manage nor maintain it.]

[When you learn a new subject, it helps to have mental abstraction barriers, too, so you know when you can
replace one approach with a di↵erent approach. I want to give you four levels of abstraction that can help
you think about machine learning. It’s important to make mental distinctions between these four things, and
the code you write should have modules that reflect these distinctions as well.]

APPLICATION/DATA

data labeled or not?
yes: labels categorical (classification) or quantitative (regression)?
no: similarity (clustering) or positioning (dimensionality reduction)?

MODEL [what kinds of hypotheses are permitted?]

e.g.:
– decision fns: linear, polynomial, logistic, neural net, . . .
– nearest neighbors, decision trees
– features
– low vs. high capacity (a↵ects overfitting, underfitting, inference)

OPTIMIZATION PROBLEM

– variables, objective fn, constraints
e.g., unconstrained, convex program, least squares, PCA

OPTIMIZATION ALGORITHM

e.g., gradient descent, simplex, SVD

[In this course, we focus primarily on the middle two levels. As a data scientist, you might be given an
application, and your challenge is to turn it into an optimization problem that we know how to solve. We
will talk about optimization algorithms, but usually data analysts use optimization codes that are faster and
more robust than what they would write themselves.]

[The second level, the model, has a huge e↵ect on the success of your learning algorithm. Sometimes you
get a big improvement by tailoring the model or its features to fit the structure of your specific data. The
model also has a big e↵ect on whether you overfit or underfit. And if you want a model that you can interpret
so you can do inference, the model has to have a simple structure. Lastly, you have to pick a model that
leads to an optimization problem that can be solved. Some optimization problems are just too hard.]

[It’s important to understand that when you change something in one level of this diagram, you probably
have to change all the levels underneath it. If you switch your model from a linear classifier to a neural net,
your optimization problem changes, and your optimization algorithm changes too.]

26 Jonathan Richard Shewchuk

[Not all machine learning methods fit this four-level decomposition. Nevertheless, for everything you learn
in this class, think about where it fits in this hierarchy. If you don’t distinguish which math is part of the
model and which math is part of the optimization algorithm, this course will be very confusing for you.]

OPTIMIZATION PROBLEMS

[I want to familiarize you with some types of optimization problems that can be solved reliably and e�-
ciently, and the names of some of the optimization algorithms used to solve them. An important skill for
you to develop is to be able to go from an application to a well-defined optimization problem. That skill
depends on your ability to recognize well-studied types of optimization problems.]

Unconstrained

Goal: Find w that minimizes (or maximizes) a continuous objective fn f (w).

f is smooth if its gradient is continuous too.

A global minimum of f is a value w such that f (w)  f (v) for every v.
A local minimum ” ” ” ” ” ” ” ” ” ”

for every v in a tiny ball centered at w.
[In other words, you cannot walk downhill from w.]

global minimum
local minima

[Draw this by hand. minima.pdf]

Usually, finding a local minimum is easy;
finding the global minimum is hard. [or impossible]

Exception: A function is convex if for every x, y 2 Rd,
the line segment connecting (x, f (x)) to (y, f (y)) does not go below f (·).

yx [Draw this by hand. convex.pdf]

Formally: for every x, y 2 Rd and � 2 [0, 1], f (x + �(y � x))  f (x) + �(f (y) � f (x)).
E.g., perceptron risk fn is convex and nonsmooth.

Machine Learning Abstractions and Numerical Optimization 27

[When you sum together convex functions, you always get a convex function. The perceptron risk function
is a sum of convex loss functions, so it is convex.]

A [continuous] convex function [on a closed, convex domain] has either
– no minimum (goes to �1), or
– just one local minimum, or
– a connected set of local minima that are all global minima with equal f .

[The perceptron risk function is in the last category.]
[In the last two cases, if you walk downhill, you eventually reach a global minimum.]

Gradient descent: repeat w w � ✏ r f (w)

learningrates20.gif (Gajanan Bhat, gbhat.com) [Gradient descent with di↵erent learning
rates ✏. Top left: painfully small. Top right: reasonable, but still smaller than ideal. Bottom
left: reasonable, but larger than ideal. Bottom right: too large; diverges. This is an animated
GIF; see https://gbhat.com/machine learning/gradient descent learning rates.html .]

– Fails/diverges if ✏ too large.
– Slow if ✏ too small.
– ✏ often optimized by trial & error [for slow learners like neural networks].

[The best value of ✏ is hard to guess. One common technique for dealing with divergence is to check whether
a step of gradient descent increases the function value rather than decreasing it; if so, reduce the step size.]

[That’s a simple example of what’s called an adaptive learning rate or a learning rate schedule. These
adaptations become even more important when you do stochastic gradient descent or when you optimize
non-convex, very twisty objective functions. We’ll revisit the idea when we learn neural networks.]

28 Jonathan Richard Shewchuk

[One interesting aspect of gradient descent that these figures illustrate is that it usually never reaches the
exact local minimum. Instead, it gets closer and closer forever, but never exactly reaches the true minimum.
We call this behavior “convergence.” The last question of Homework 2 will give you some understanding
of why convergence happens under the right conditions.]

[When we have a feature space with more than one dimension, another problem arises, which is that the
learning rate that’s good for one direction might be terrible in another direction. Consider the three examples
of gradient descent below.]

-4 -2 2 4
w1

-2

2

4

6

w2

-4 -2 2 4
w1

-2

2

4

6

w2

-4 -2 2 4
w1

-2

2

4

6

w2

goodcondition.pdf, illcondition105.pdf, illcondition055.pdf [Left: 20 iterations of gradi-
ent descent on a well-conditioned quadratic function, f (w) = 2w2

1 + w2
2, with a modest step

size ✏ = 0.105. Center: 20 iterations on an ill-conditioned function, f (w) = 10w2
1 + w2

2; the
same step size is now too large. Right: after reducing the step size to ✏ = 0.055, we have
convergence again but we aren’t approaching the minimum nearly as quickly.]

[The step size that works for the left example is too large for the center example; it diverges in the w1-
direction. At right, we reduce the step size and obtain convergence. But now convergence is slow in the
w2-direction.]

High ellipticity of the contours, a.k.a. ill-conditioning of the Hessian, means no learning rate is good in all
directions.

[The Hessian matrix is said to be ill-conditioned if its largest eigenvalue is much larger than its small-
est eigenvalue. Ill-conditioning can be a problem even for simple methods like linear regression, making
it harder to solve the problem. In response to these observations, there are adaptive learning rate algo-
rithms that explicitly choose di↵erent learning rates in di↵erent directions. Famous examples are Adam and
RMSprop.]

[There are many applications where you don’t have a convex objective function. Then gradient descent
usually can find a local minimum, but not necessarily a global minimum. And often there is no guarantee
that the local minimum you find will be nearly as good as the global minimum. Nevertheless, gradient
descent is used for a lot of nonconvex machine learning problems too. For example, neural networks try
to optimize an objective function that has lots of local minima. But stochastic gradient descent is still the
algorithm of choice for training neural nets. We’ll talk more later in the semester about why.]

Machine Learning Abstractions and Numerical Optimization 29

Linear Program

Linear objective fn + linear inequality constraints.

Goal: Find w that maximizes (or minimizes) c · w
subject to Aw  b

where A is n ⇥ d matrix, b 2 Rn, expressing n linear constraints:
Ai · w  bi, i 2 [1, n]

in w-space:

optimum
c

active constraint

active constraint

feasible
region

[Draw this by hand. linprog.pdf]

The set of points w that satisfy all constraints is a convex polytope called the feasible region F [shaded].
The optimum is the point in F that is furthest in the direction c. [What does convex mean?]
A point set P is convex if for every p, q 2 P, the line segment with endpoints p, q lies entirely in P.

[What is a polytope? Just a polyhedron, generalized to higher dimensions.]

The optimum achieves equality for some constraints (but not most), called the active constraints of the
optimum. [In the figure above, there are two active constraints. In an SVM, active constraints correspond to
the training points that touch or violate the slab, and these points are also known as support vectors.]

[Sometimes, there is more than one optimal point. For example, in the figure above, if c pointed straight up,
every point on the top horizontal edge would be optimal. The set of optimal points is always convex.]

Example: EVERY feasible point (w,↵) gives a linear classifier:

Find w, ↵ that satisfies yi(w · Xi + ↵) � 1 for all i 2 [1, n]

[This is the problem of finding a feasible point. This problem can be cast as a slightly di↵erent linear
program that uses an objective function to make all the inequalities be satisfied strictly if that’s possible.]

IMPORTANT: The data are linearly separable i↵ the feasible region is not the empty set.
! Also true for maximum margin classifier (quadratic program)

[The most famous algorithm for linear programming is the simplex algorithm, invented by George Dantzig
in 1947. The simplex algorithm is indisputably one of the most important and useful algorithms of the
20th century. It walks along edges of the feasible region, traveling from vertex to vertex until it finds an
optimum.]

[Linear programming is very di↵erent from unconstrained optimization; it has a much more combinatorial
flavor. If you knew which constraints would be the active constraints once you found the solution, it would
be easy; the hard part is figuring out which constraints should be the active ones. There are exponentially
many possibilities, so you can’t a↵ord to try them all. So linear programming algorithms tend to have a
very discrete, computer science feeling to them, like graph algorithms, whereas unconstrained optimization
algorithms tend to have a continuous, numerical mathematics feeling.]

30 Jonathan Richard Shewchuk

[Linear programs crop up everywhere in engineering and science, but they’re usually in disguise. An ex-
tremely useful talent you should develop is to recognize when a problem is a linear program.]

[A linear program solver can find a linear classifier, but it can’t find the maximum margin classifier. We
need something more powerful.]

Quadratic Program

Quadratic, convex objective fn + linear inequality constraints.

Goal: Find w that minimizes f (w) = w>Qw + c>w
subject to Aw  b

where Q is a symmetric, positive semidefinite matrix.

[A matrix is positive semidefinite if w>Qw > 0 for all w.]

If Q is positive definite, only one local minimum! [Which is therefore the global minimum.]

[What if Q is not positive definite? If Q is indefinite, then f is not convex, the minimum is not always
unique, and quadratic programming is NP-hard. If Q is positive semidefinite, meaning w>Qw � 0 for all w,
then f is convex and quadratic programming is tractable, but there may be infinitely many solutions.]

Example: Find maximum margin classifier.

1
2

3

4

5

6

7

8

9

10

1010

10

11

11

1111

12

1212

1213

13

13 13

14

14

14 14

15

15

1515

16

16

16

16

17
17

17
17

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

quadratic.pdf [Left: A hard-margin SVM minimizes the objective function w2
1+w2

2. Right:
A reminder that there is also an ↵-axis, so the isosurfaces of the objective function are really
cylinders. On the left isocontours, draw two polygons—one with one active constraint, and
one with two—and show the constrained minimum for each polygon. “In a hard-margin
SVM, we are looking for the point in this polygon that’s closest to the ↵-axis.”]

Algs for quadratic programming:
– Simplex-like [commonly used for general-purpose quadratic programs, but not as good for SVMs as

the following two algorithms that specifically exploit properties of SVMs]
– Sequential minimal optimization (SMO, used in LIBSVM, “SVC” in scikit)
– Coordinate descent (used in LIBLINEAR, “LinearSVC” in scikit)

Numerical optimization @ Berkeley: EECS 127/227AT/227BT/227C.

