
Maximum likelihood estimation
(Redirected from Maximum likelihood)
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an
assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function
so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space
that maximizes the likelihood function is called the maximum likelihood estimate.[1] The logic of maximum
likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical
inference.[2][3][4]

If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases,
the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least
squares estimator for a linear regression model maximizes the likelihood when the random errors are assumed to
have normal distributions with the same variance.[5]

From the perspective of Bayesian inference, MLE is generally equivalent to maximum a posteriori (MAP)
estimation with uniform prior distributions (or a normal prior distribution with a standard deviation of infinity).
In frequentist inference, MLE is a special case of an extremum estimator, with the objective function being the
likelihood.

We model a set of observations as a random sample from an unknown joint probability distribution which is
expressed in terms of a set of parameters. The goal of maximum likelihood estimation is to determine the
parameters for which the observed data have the highest joint probability. We write the parameters governing the

joint distribution as a vector  so that this distribution falls within a parametric family
 where  is called the parameter space, a finite-dimensional subset of Euclidean space.

Evaluating the joint density at the observed data sample  gives a real-valued function,

which is called the likelihood function. For independent and identically distributed random variables, 
will be the product of univariate density functions:

The goal of maximum likelihood estimation is to find the values of the model parameters that maximize the
likelihood function over the parameter space,[6] that is

Intuitively, this selects the parameter values that make the observed data most probable. The specific value

 that maximizes the likelihood function  is called the maximum likelihood estimate. Further,
if the function  so defined is measurable, then it is called the maximum likelihood estimator. It is

Principles

https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/w/index.php?title=Maximum_likelihood&redirect=no
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Point_estimate
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Derivative_test
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Frequentist_inference
https://en.wikipedia.org/wiki/Extremum_estimator
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Statistical_parameters
https://en.wikipedia.org/wiki/Parametric_family
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Estimator


generally a function defined over the sample space, i.e. taking a given sample as its argument. A sufficient but not
necessary condition for its existence is for the likelihood function to be continuous over a parameter space  that
is compact.[7] For an open  the likelihood function may increase without ever reaching a supremum value.

In practice, it is often convenient to work with the natural logarithm of the likelihood function, called the log-
likelihood:

Since the logarithm is a monotonic function, the maximum of  occurs at the same value of  as does the
maximum of [8] If  is differentiable in  sufficient conditions for the occurrence of a maximum (or a
minimum) are

known as the likelihood equations. For some models, these equations can be explicitly solved for  but in
general no closed-form solution to the maximization problem is known or available, and an MLE can only be
found via numerical optimization. Another problem is that in finite samples, there may exist multiple roots for the

likelihood equations.[9] Whether the identified root  of the likelihood equations is indeed a (local) maximum
depends on whether the matrix of second-order partial and cross-partial derivatives, the so-called Hessian matrix

is negative semi-definite at , as this indicates local concavity. Conveniently, most common probability
distributions – in particular the exponential family – are logarithmically concave.[10][11]

While the domain of the likelihood function—the parameter space—is generally a finite-dimensional subset of
Euclidean space, additional restrictions sometimes need to be incorporated into the estimation process. The
parameter space can be expressed as

where  is a vector-valued function mapping  into  Estimating the true
parameter  belonging to  then, as a practical matter, means to find the maximum of the likelihood function
subject to the constraint 

Theoretically, the most natural approach to this constrained optimization problem is the method of substitution,
that is "filling out" the restrictions  to a set  in such a way that

 is a one-to-one function from  to itself, and reparameterize the likelihood function by
setting [12] Because of the equivariance of the maximum likelihood estimator, the

Restricted parameter space
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properties of the MLE apply to the restricted estimates also.[13] For instance, in a multivariate normal distribution
the covariance matrix  must be positive-definite; this restriction can be imposed by replacing 
where  is a real upper triangular matrix and  is its transpose.[14]

In practice, restrictions are usually imposed using the method of Lagrange which, given the constraints as defined
above, leads to the restricted likelihood equations

 and 

where  is a column-vector of Lagrange multipliers and  is the k × r Jacobian

matrix of partial derivatives.[12] Naturally, if the constraints are not binding at the maximum, the Lagrange
multipliers should be zero.[15] This in turn allows for a statistical test of the "validity" of the constraint, known as
the Lagrange multiplier test.

Nonparametric maximum likelihood estimation can be performed using the empirical likelihood.

A maximum likelihood estimator is an extremum estimator obtained by maximizing, as a function of θ, the

objective function . If the data are independent and identically distributed, then we have

this being the sample analogue of the expected log-likelihood , where this expectation is
taken with respect to the true density.

Maximum-likelihood estimators have no optimum properties for finite samples, in the sense that (when evaluated
on finite samples) other estimators may have greater concentration around the true parameter-value.[16]

However, like other estimation methods, maximum likelihood estimation possesses a number of attractive
limiting properties: As the sample size increases to infinity, sequences of maximum likelihood estimators have
these properties:

Consistency: the sequence of MLEs converges in probability to the value being estimated.
Invariance: If  is the maximum likelihood estimator for , and if  is any transformation of , then the
maximum likelihood estimator for  is . This property is less commonly known as functional
equivariance. The invariance property holds for arbitrary transformation , although the proof simplifies if  is
restricted to one-to-one transformations.
Efficiency, i.e. it achieves the Cramér–Rao lower bound when the sample size tends to infinity. This means
that no consistent estimator has lower asymptotic mean squared error than the MLE (or other estimators
attaining this bound), which also means that MLE has asymptotic normality.
Second-order efficiency after correction for bias.

Nonparametric maximum likelihood estimation

Properties

Consistency
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Under the conditions outlined below, the maximum likelihood estimator is consistent. The consistency means that
if the data were generated by  and we have a sufficiently large number of observations n, then it is possible
to find the value of θ0 with arbitrary precision. In mathematical terms this means that as n goes to infinity the

estimator  converges in probability to its true value:

Under slightly stronger conditions, the estimator converges almost surely (or strongly):

In practical applications, data is never generated by . Rather,  is a model, often in idealized form,
of the process generated by the data. It is a common aphorism in statistics that all models are wrong. Thus, true
consistency does not occur in practical applications. Nevertheless, consistency is often considered to be a
desirable property for an estimator to have.

To establish consistency, the following conditions are sufficient.[17]

1. Identification of the model:

In other words, different parameter values θ correspond to different distributions within the model. If this
condition did not hold, there would be some value θ1 such that θ0 and θ1 generate an identical distribution of
the observable data. Then we would not be able to distinguish between these two parameters even with an
infinite amount of data—these parameters would have been observationally equivalent.

The identification condition is absolutely necessary for the ML estimator to be consistent. When this condition
holds, the limiting likelihood function ℓ(θ|·) has unique global maximum at θ0.

2. Compactness: the parameter space Θ of the model is compact.
The identification condition establishes that the log-likelihood has a unique
global maximum. Compactness implies that the likelihood cannot approach
the maximum value arbitrarily close at some other point (as demonstrated
for example in the picture on the right).

Compactness is only a sufficient condition and not a necessary condition. Compactness can be replaced by
some other conditions, such as:

both concavity of the log-likelihood function and compactness of some (nonempty) upper level sets of the
log-likelihood function, or
existence of a compact neighborhood N of θ0 such that outside of N the log-likelihood function is less than
the maximum by at least some ε > 0.

3. Continuity: the function ln f(x | θ) is continuous in θ for almost all values of x:

The continuity here can be replaced with a slightly weaker condition of upper semi-continuity.
4. Dominance: there exists D(x) integrable with respect to the distribution f(x | θ0) such that
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By the uniform law of large numbers, the dominance condition together with continuity establish the uniform
convergence in probability of the log-likelihood:

The dominance condition can be employed in the case of i.i.d. observations. In the non-i.i.d. case, the uniform

convergence in probability can be checked by showing that the sequence  is stochastically equicontinuous.

If one wants to demonstrate that the ML estimator  converges to θ0 almost surely, then a stronger condition of
uniform convergence almost surely has to be imposed:

Additionally, if (as assumed above) the data were generated by , then under certain conditions, it can also
be shown that the maximum likelihood estimator converges in distribution to a normal distribution.
Specifically,[18]

where I is the Fisher information matrix.

The maximum likelihood estimator selects the parameter value which gives the observed data the largest possible
probability (or probability density, in the continuous case). If the parameter consists of a number of components,
then we define their separate maximum likelihood estimators, as the corresponding component of the MLE of the

complete parameter. Consistent with this, if  is the MLE for , and if  is any transformation of , then the
MLE for  is by definition[19]

It maximizes the so-called profile likelihood:

The MLE is also equivariant with respect to certain transformations of the data. If  where  is one to one
and does not depend on the parameters to be estimated, then the density functions satisfy

and hence the likelihood functions for  and  differ only by a factor that does not depend on the model
parameters.

For example, the MLE parameters of the log-normal distribution are the same as those of the normal distribution
fitted to the logarithm of the data.

Functional invariance

Efficiency
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As assumed above, if the data were generated by  then under certain conditions, it can also be shown
that the maximum likelihood estimator converges in distribution to a normal distribution. It is √n -consistent and
asymptotically efficient, meaning that it reaches the Cramér–Rao bound. Specifically,[18]

where  is the Fisher information matrix:

In particular, it means that the bias of the maximum likelihood estimator is equal to zero up to the order  
1

√n  .

However, when we consider the higher-order terms in the expansion of the distribution of this estimator, it turns
out that θmle has bias of order 1⁄n. This bias is equal to (componentwise)[20]

where  (with superscripts) denotes the (j,k)-th component of the inverse Fisher information matrix , and

Using these formulae it is possible to estimate the second-order bias of the maximum likelihood estimator, and
correct for that bias by subtracting it:

This estimator is unbiased up to the terms of order  
1

 n  , and is called the bias-corrected maximum likelihood

estimator.

This bias-corrected estimator is second-order efficient (at least within the curved exponential family), meaning
that it has minimal mean squared error among all second-order bias-corrected estimators, up to the terms of the

order  
1

 n2   . It is possible to continue this process, that is to derive the third-order bias-correction term, and so on.

However, the maximum likelihood estimator is not third-order efficient.[21]

A maximum likelihood estimator coincides with the most probable Bayesian estimator given a uniform prior
distribution on the parameters. Indeed, the maximum a posteriori estimate is the parameter θ that maximizes the
probability of θ given the data, given by Bayes' theorem:

Second-order efficiency after correction for bias

Relation to Bayesian inference
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where  is the prior distribution for the parameter θ and where  is the probability of the data
averaged over all parameters. Since the denominator is independent of θ, the Bayesian estimator is obtained by
maximizing  with respect to θ. If we further assume that the prior  is a uniform
distribution, the Bayesian estimator is obtained by maximizing the likelihood function . Thus
the Bayesian estimator coincides with the maximum likelihood estimator for a uniform prior distribution .

In many practical applications in machine learning, maximum-likelihood estimation is used as the model for
parameter estimation.

The Bayesian Decision theory is about designing a classifier that minimizes total expected risk, especially, when
the costs (the loss function) associated with different decisions are equal, the classifier is minimizing the error
over the whole distribution.[22]

Thus, the Bayes Decision Rule is stated as

"decide  if  otherwise decide "

where  are predictions of different classes. From a perspective of minimizing error, it can also be stated as

where

if we decide  and  if we decide 

By applying Bayes' theorem

,

and if we further assume the zero-or-one loss function, which is a same loss for all errors, the Bayes Decision rule
can be reformulated as:

where  is the prediction and  is the prior probability.

Finding  that maximizes the likelihood is asymptotically equivalent to finding the  that defines a probability
distribution ( ) that has a minimal distance, in terms of Kullback–Leibler divergence, to the real probability

distribution from which our data were generated (i.e., generated by ).[23] In an ideal world, P and Q are the
same (and the only thing unknown is  that defines P), but even if they are not and the model we use is
misspecified, still the MLE will give us the "closest" distribution (within the restriction of a model Q that depends

on ) to the real distribution .[24]

Application of maximum-likelihood estimation in Bayes decision theory

Relation to minimizing Kullback–Leibler divergence and cross entropy
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[show]Proof.

For simplicity of notation, let's assume that P=Q. Let there be n i.i.d data samples  from
some probability , that we try to estimate by finding  that will maximize the likelihood using , then:

Where . Using h helps see how we are using the law of large numbers to move from

the average of h(x) to the expectancy of it using the law of the unconscious statistician. The first several
transitions have to do with laws of logarithm and that finding  that maximizes some function will also be the
one that maximizes some monotonic transformation of that function (i.e.: adding/multiplying by a constant).

Since cross entropy is just Shannon's entropy plus KL divergence, and since the entropy of  is constant,
then the MLE is also asymptotically minimizing cross entropy.[25]

Consider a case where n tickets numbered from 1 to n are placed in a box and one is selected at random (see
uniform distribution); thus, the sample size is 1. If n is unknown, then the maximum likelihood estimator  of n is
the number m on the drawn ticket. (The likelihood is 0 for n < m, 1⁄n for n ≥ m, and this is greatest when n = m.
Note that the maximum likelihood estimate of n occurs at the lower extreme of possible values {m, m + 1, ...},
rather than somewhere in the "middle" of the range of possible values, which would result in less bias.) The
expected value of the number m on the drawn ticket, and therefore the expected value of , is (n + 1)/2. As a
result, with a sample size of 1, the maximum likelihood estimator for n will systematically underestimate n by
(n − 1)/2.

Suppose one wishes to determine just how biased an unfair coin is. Call the probability of tossing a 'head' p. The
goal then becomes to determine p.

Suppose the coin is tossed 80 times: i.e. the sample might be something like x1 = H, x2 = T, ..., x80 = T, and the
count of the number of heads "H" is observed.

Examples

Discrete uniform distribution

Discrete distribution, finite parameter space
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Likelihood function for proportion
value of a binomial process
(n = 10)

The probability of tossing tails is 1 − p (so here p is θ above). Suppose the outcome is 49 heads and 31 tails, and
suppose the coin was taken from a box containing three coins: one which gives heads with probability p = 1⁄3, one
which gives heads with probability p = 1⁄2 and another which gives heads with probability p = 2⁄3. The coins have
lost their labels, so which one it was is unknown. Using maximum likelihood estimation, the coin that has the
largest likelihood can be found, given the data that were observed. By using the probability mass function of the
binomial distribution with sample size equal to 80, number successes equal to 49 but for different values of p (the
"probability of success"), the likelihood function (defined below) takes one of three values:

The likelihood is maximized when p = 2⁄3, and so this is the maximum likelihood estimate for p.

Now suppose that there was only one coin but its p could have been any value 0 ≤ p ≤ 1 . The likelihood function
to be maximised is

and the maximisation is over all possible values 0 ≤ p ≤ 1 .

One way to maximize this function is by differentiating with respect to p and
setting to zero:

This is a product of three terms. The first term is 0 when p = 0. The second is 0 when p = 1. The third is zero when
p = 49⁄80. The solution that maximizes the likelihood is clearly p = 49⁄80 (since p = 0 and p = 1 result in a likelihood
of 0). Thus the maximum likelihood estimator for p is 49⁄80.

This result is easily generalized by substituting a letter such as s in the place of 49 to represent the observed
number of 'successes' of our Bernoulli trials, and a letter such as n in the place of 80 to represent the number of
Bernoulli trials. Exactly the same calculation yields s⁄n which is the maximum likelihood estimator for any
sequence of n Bernoulli trials resulting in s 'successes'.

For the normal distribution  which has probability density function

Discrete distribution, continuous parameter space

Continuous distribution, continuous parameter space
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the corresponding probability density function for a sample of n independent identically distributed normal
random variables (the likelihood) is

This family of distributions has two parameters: θ = (μ, σ); so we maximize the likelihood,
, over both parameters simultaneously, or if possible, individually.

Since the logarithm function itself is a continuous strictly increasing function over the range of the likelihood, the
values which maximize the likelihood will also maximize its logarithm (the log-likelihood itself is not necessarily
strictly increasing). The log-likelihood can be written as follows:

(Note: the log-likelihood is closely related to information entropy and Fisher information.)

We now compute the derivatives of this log-likelihood as follows.

where  is the sample mean. This is solved by

This is indeed the maximum of the function, since it is the only turning point in μ and the second derivative is
strictly less than zero. Its expected value is equal to the parameter μ of the given distribution,

which means that the maximum likelihood estimator  is unbiased.

Similarly we differentiate the log-likelihood with respect to σ and equate to zero:

which is solved by

Inserting the estimate  we obtain
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To calculate its expected value, it is convenient to rewrite the expression in terms of zero-mean random variables
(statistical error) . Expressing the estimate in these variables yields

Simplifying the expression above, utilizing the facts that  and , allows us to obtain

This means that the estimator  is biased for . It can also be shown that  is biased for , but that both  and
 are consistent.

Formally we say that the maximum likelihood estimator for  is

In this case the MLEs could be obtained individually. In general this may not be the case, and the MLEs would
have to be obtained simultaneously.

The normal log-likelihood at its maximum takes a particularly simple form:

This maximum log-likelihood can be shown to be the same for more general least squares, even for non-linear
least squares. This is often used in determining likelihood-based approximate confidence intervals and confidence
regions, which are generally more accurate than those using the asymptotic normality discussed above.

It may be the case that variables are correlated, that is, not independent. Two random variables  and  are
independent only if their joint probability density function is the product of the individual probability density
functions, i.e.

Suppose one constructs an order-n Gaussian vector out of random variables , where each variable has
means given by . Furthermore, let the covariance matrix be denoted by . The joint probability
density function of these n random variables then follows a multivariate normal distribution given by:

In the bivariate case, the joint probability density function is given by:

Non-independent variables
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In this and other cases where a joint density function exists, the likelihood function is defined as above, in the
section "principles," using this density.

 are counts in cells / boxes 1 up to m; each box has a different probability (think of the boxes
being bigger or smaller) and we fix the number of balls that fall to be : . The probability
of each box is , with a constraint: . This is a case in which the  s are not independent,
the joint probability of a vector  is called the multinomial and has the form:

Each box taken separately against all the other boxes is a binomial and this is an extension thereof.

The log-likelihood of this is:

The constraint has to be taken into account and use the Lagrange multipliers:

By posing all the derivatives to be 0, the most natural estimate is derived

Maximizing log likelihood, with and without constraints, can be an unsolvable problem in closed form, then we
have to use iterative procedures.

Except for special cases, the likelihood equations

cannot be solved explicitly for an estimator . Instead, they need to be solved iteratively: starting from an

initial guess of  (say ), one seeks to obtain a convergent sequence . Many methods for this kind of

optimization problem are available,[26][27] but the most commonly used ones are algorithms based on an updating
formula of the form

Example

Iterative procedures
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where the vector  indicates the descent direction of the rth "step," and the scalar  captures the "step

length,"[28][29] also known as the learning rate.[30]

(Note: here it is a maximization problem, so the sign before gradient is flipped)

 that is small enough for convergence and 

Gradient descent method requires to calculate the gradient at the rth iteration, but no need to calculate the inverse
of second-order derivative, i.e., the Hessian matrix. Therefore, it is computationally faster than Newton-Raphson
method.

 and 

where  is the score and  is the inverse of the Hessian matrix of the log-likelihood function, both

evaluated the rth iteration.[31][32] But because the calculation of the Hessian matrix is computationally costly,
numerous alternatives have been proposed. The popular Berndt–Hall–Hall–Hausman algorithm approximates
the Hessian with the outer product of the expected gradient, such that

Other quasi-Newton methods use more elaborate secant updates to give approximation of Hessian matrix.

DFP formula finds a solution that is symmetric, positive-definite and closest to the current approximate value of
second-order derivative:

where

BFGS also gives a solution that is symmetric and positive-definite:

Gradient descent method

Newton–Raphson method

Quasi-Newton methods

Davidon–Fletcher–Powell formula

Broyden–Fletcher–Goldfarb–Shanno algorithm
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Ronald Fisher in 1913

Mathematics portal

where

BFGS method is not guaranteed to converge unless the function has a quadratic Taylor expansion near an
optimum. However, BFGS can have acceptable performance even for non-smooth optimization instances

Another popular method is to replace the Hessian with the Fisher information matrix, , giving

us the Fisher scoring algorithm. This procedure is standard in the estimation of many methods, such as
generalized linear models.

Although popular, quasi-Newton methods may converge to a stationary point that is not necessarily a local or
global maximum,[33] but rather a local minimum or a saddle point. Therefore, it is important to assess the validity
of the obtained solution to the likelihood equations, by verifying that the Hessian, evaluated at the solution, is
both negative definite and well-conditioned.[34]

Early users of maximum likelihood include Carl Friedrich Gauss, Pierre-Simon
Laplace, Thorvald N. Thiele, and Francis Ysidro Edgeworth.[35][36] It was
Ronald Fisher however, between 1912 and 1922, who singlehandedly created
the modern version of the method.[37][38]

Maximum-likelihood estimation finally transcended heuristic justification in a
proof published by Samuel S. Wilks in 1938, now called Wilks' theorem.[39]

The theorem shows that the error in the logarithm of likelihood values for
estimates from multiple independent observations is asymptotically χ 2-
distributed, which enables convenient determination of a confidence region
around any estimate of the parameters. The only difficult part of Wilks' proof
depends on the expected value of the Fisher information matrix, which is
provided by a theorem proven by Fisher.[40] Wilks continued to improve on
the generality of the theorem throughout his life, with his most general proof
published in 1962.[41]

Reviews of the development of maximum likelihood estimation have been
provided by a number of authors.[42][43][44][45][46][47][48][49]

Akaike information criterion: a criterion to compare statistical models, based on MLE

Fisher's scoring

History

See also
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Extremum estimator: a more general class of estimators to which MLE belongs
Fisher information: information matrix, its relationship to covariance matrix of ML estimates
Mean squared error: a measure of how 'good' an estimator of a distributional parameter is (be it the maximum
likelihood estimator or some other estimator)
RANSAC: a method to estimate parameters of a mathematical model given data that contains outliers
Rao–Blackwell theorem: yields a process for finding the best possible unbiased estimator (in the sense of
having minimal mean squared error); the MLE is often a good starting place for the process
Wilks' theorem: provides a means of estimating the size and shape of the region of roughly equally-probable
estimates for the population's parameter values, using the information from a single sample, using a chi-
squared distribution

Generalized method of moments: methods related to the likelihood equation in maximum likelihood estimation
M-estimator: an approach used in robust statistics
Maximum a posteriori (MAP) estimator: for a contrast in the way to calculate estimators when prior knowledge
is postulated
Maximum spacing estimation: a related method that is more robust in many situations
Maximum entropy estimation
Method of moments (statistics): another popular method for finding parameters of distributions
Method of support, a variation of the maximum likelihood technique
Minimum-distance estimation
Partial likelihood methods for panel data
Quasi-maximum likelihood estimator: an MLE estimator that is misspecified, but still consistent
Restricted maximum likelihood: a variation using a likelihood function calculated from a transformed set of
data
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