
Bias–variance tradeoff
(Redirected from Bias-variance tradeoff)
In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity,
the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train
the model. In general, as we increase the number of tunable parameters in a model, it becomes more flexible, and can
better fit a training data set. It is said to have lower error, or bias. However, for more flexible models, there will tend to be
greater variance to the model fit each time we take a set of samples to create a new training data set. It is said that there is
greater variance in the model's estimated parameters.

The bias–variance dilemma or bias–variance problem is the conflict in trying to simultaneously minimize these
two sources of error that prevent supervised learning algorithms from generalizing beyond their training set:[1][2]

The bias error is an error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to
miss the relevant relations between features and target outputs (underfitting).
The variance is an error from sensitivity to small fluctuations in the training set. High variance may result from an
algorithm modeling the random noise in the training data (overfitting).

The bias–variance decomposition is a way of analyzing a learning algorithm's expected generalization error with
respect to a particular problem as a sum of three terms, the bias, variance, and a quantity called the irreducible error,
resulting from noise in the problem itself.
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The bias–variance tradeoff is a central problem in supervised learning. Ideally, one wants to choose a model that both
accurately captures the regularities in its training data, but also generalizes well to unseen data. Unfortunately, it is
typically impossible to do both simultaneously. High-variance learning methods may be able to represent their training set
well but are at risk of overfitting to noisy or unrepresentative training data. In contrast, algorithms with high bias typically
produce simpler models that may fail to capture important regularities (i.e. underfit) in the data.
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A function (red) is approximated
using radial basis functions
(blue). Several trials are shown in
each graph. For each trial, a few
noisy data points are provided as
a training set (top). For a wide
spread (image 2) the bias is high:
the RBFs cannot fully
approximate the function
(especially the central dip), but
the variance between different
trials is low. As spread decreases
(image 3 and 4) the bias
decreases: the blue curves more
closely approximate the red.
However, depending on the noise
in different trials the variance
between trials increases. In the
lowermost image the
approximated values for x=0
varies wildly depending on where
the data points were located.

It is an often made fallacy[3][4] to assume that complex models must have high variance.
High variance models are "complex" in some sense, but the reverse needs not be true.[5]

In addition, one has to be careful how to define complexity. In particular, the number of
parameters used to describe the model is a poor measure of complexity. This is illustrated
by an example adapted from:[6] The model  has only two parameters (

) but it can interpolate any number of points by oscillating with a high enough
frequency, resulting in both a high bias and high variance.

An analogy can be made to the relationship between accuracy and precision. Accuracy is a
description of bias and can intuitively be improved by selecting from only local
information. Consequently, a sample will appear accurate (i.e. have low bias) under the
aforementioned selection conditions, but may result in underfitting. In other words, test
data may not agree as closely with training data, which would indicate imprecision and
therefore inflated variance. A graphical example would be a straight line fit to data
exhibiting quadratic behavior overall. Precision is a description of variance and generally
can only be improved by selecting information from a comparatively larger space. The
option to select many data points over a broad sample space is the ideal condition for any
analysis. However, intrinsic constraints (whether physical, theoretical, computational,
etc.) will always play a limiting role. The limiting case where only a finite number of data
points are selected over a broad sample space may result in improved precision and lower
variance overall, but may also result in an overreliance on the training data (overfitting).
This means that test data would also not agree as closely with the training data, but in
this case the reason is inaccuracy or high bias. To borrow from the previous example, the
graphical representation would appear as a high-order polynomial fit to the same data
exhibiting quadratic behavior. Note that error in each case is measured the same way, but
the reason ascribed to the error is different depending on the balance between bias and
variance. To mitigate how much information is used from neighboring observations, a
model can be smoothed via explicit regularization, such as shrinkage.

Suppose that we have a training set consisting of a set of points  and real
values  associated with each point . We assume that the data is generated by a
function  such as , where the noise, , has zero mean and variance .

We want to find a function , that approximates the true function  as well as
possible, by means of some learning algorithm based on a training dataset (sample)

. We make "as well as possible" precise by measuring the

mean squared error between  and : we want  to be minimal,
both for  and for points outside of our sample. Of course, we cannot hope to
do so perfectly, since the  contain noise ; this means we must be prepared to accept an
irreducible error in any function we come up with.

Finding an  that generalizes to points outside of the training set can be done with any of
the countless algorithms used for supervised learning. It turns out that whichever

function  we select, we can decompose its expected error on an unseen sample  (i.e.
conditional to x) as follows:[7]: 34 [8]: 223 

where

Bias–variance decomposition of mean squared
error
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Bias and variance as function of
model complexity

and

The expectation ranges over different choices of the training set
, all sampled from the same joint distribution  which can for example be done via

bootstrapping. The three terms represent:

the square of the bias of the learning method, which can be thought of as the error caused by the simplifying
assumptions built into the method. E.g., when approximating a non-linear function  using a learning method for
linear models, there will be error in the estimates  due to this assumption;

the variance of the learning method, or, intuitively, how much the learning method  will move around its mean;

the irreducible error .
Since all three terms are non-negative, the irreducible error forms a lower bound on the expected error on unseen
samples.[7]: 34 

The more complex the model  is, the more data points it will capture, and the lower the bias will be. However,
complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

The derivation of the bias–variance decomposition for squared error proceeds as follows.[9][10] For notational
convenience, we abbreviate ,  and we drop the  subscript on our expectation operators.

Let us write the mean-squared error of our model:

Firstly, since we model , we show that

Secondly,

Lastly,

Eventually, we plug these 3 formulas in our previous derivation of  and thus show that:

Derivation
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Finally, MSE loss function (or negative log-likelihood) is obtained by taking the expectation value over :

Dimensionality reduction and feature selection can decrease variance by simplifying models. Similarly, a larger training set
tends to decrease variance. Adding features (predictors) tends to decrease bias, at the expense of introducing additional
variance. Learning algorithms typically have some tunable parameters that control bias and variance; for example,

linear and Generalized linear models can be regularized to decrease their variance at the cost of increasing their
bias.[11]

In artificial neural networks, the variance increases and the bias decreases as the number of hidden units increase,[12]

although this classical assumption has been the subject of recent debate.[4] Like in GLMs, regularization is typically
applied.
In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).
In instance-based learning, regularization can be achieved varying the mixture of prototypes and exemplars.[13]

In decision trees, the depth of the tree determines the variance. Decision trees are commonly pruned to control
variance.[7]: 307 

One way of resolving the trade-off is to use mixture models and ensemble learning.[14][15] For example, boosting combines
many "weak" (high bias) models in an ensemble that has lower bias than the individual models, while bagging combines
"strong" learners in a way that reduces their variance.

Model validation methods such as cross-validation (statistics) can be used to tune models so as to optimize the trade-off.

In the case of k-nearest neighbors regression, when the expectation is taken over the possible labeling of a fixed training
set, a closed-form expression exists that relates the bias–variance decomposition to the parameter k:[8]: 37, 223 

where  are the k nearest neighbors of x in the training set. The bias (first term) is a monotone rising
function of k, while the variance (second term) drops off as k is increased. In fact, under "reasonable assumptions" the bias
of the first-nearest neighbor (1-NN) estimator vanishes entirely as the size of the training set approaches infinity.[12]

Approaches

k-nearest neighbors

Applications

In regression
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The bias–variance decomposition forms the conceptual basis for regression regularization methods such as Lasso and
ridge regression. Regularization methods introduce bias into the regression solution that can reduce variance considerably
relative to the ordinary least squares (OLS) solution. Although the OLS solution provides non-biased regression estimates,
the lower variance solutions produced by regularization techniques provide superior MSE performance.

The bias–variance decomposition was originally formulated for least-squares regression. For the case of classification
under the 0-1 loss (misclassification rate), it is possible to find a similar decomposition.[16][17] Alternatively, if the
classification problem can be phrased as probabilistic classification, then the expected squared error of the predicted
probabilities with respect to the true probabilities can be decomposed as before.[18]

It has been argued that as training data increases, the variance of learned models will tend to decrease, and hence that as
training data quantity increases, error is minimized by methods that learn models with lesser bias, and that conversely, for
smaller training data quantities it is ever more important to minimize variance.[19]

Even though the bias–variance decomposition does not directly apply in reinforcement learning, a similar tradeoff can also
characterize generalization. When an agent has limited information on its environment, the suboptimality of an RL
algorithm can be decomposed into the sum of two terms: a term related to an asymptotic bias and a term due to
overfitting. The asymptotic bias is directly related to the learning algorithm (independently of the quantity of data) while
the overfitting term comes from the fact that the amount of data is limited.[20]

While widely discussed in the context of machine learning, the bias–variance dilemma has been examined in the context of
human cognition, most notably by Gerd Gigerenzer and co-workers in the context of learned heuristics. They have argued
(see references below) that the human brain resolves the dilemma in the case of the typically sparse, poorly-characterised
training-sets provided by experience by adopting high-bias/low variance heuristics. This reflects the fact that a zero-bias
approach has poor generalisability to new situations, and also unreasonably presumes precise knowledge of the true state
of the world. The resulting heuristics are relatively simple, but produce better inferences in a wider variety of situations.[21]

Geman et al.[12] argue that the bias–variance dilemma implies that abilities such as generic object recognition cannot be
learned from scratch, but require a certain degree of "hard wiring" that is later tuned by experience. This is because model-
free approaches to inference require impractically large training sets if they are to avoid high variance.
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MLU-Explain: The Bias Variance Tradeoff (https://mlu-explain.github.io/bias-variance/) — An interactive visualization of
the bias-variance tradeoff in LOESS Regression and K-Nearest Neighbors.
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