CS 260D —

Large Scale ML

Lecture #3: Distributed SGD

Baharan Mirzasoleiman

UCLA Computer Science

Adapted from Dimitris Papailiopoulos

Advances and Challenges in

Distributed Machine Learning

Adapted from Dimitris Papailiopoulos

Mostly Challenges

Overview

Multicore vs. Distributed
Algorithms of choice

Open challenges with Performance Gains/Analysis
Convergence/Generalization/Speedup/Delays!?
Straggler Nodes

Adversarial attacks

Stochastic Gradient Descent

Different names and flavors

ML / Optimization / Statistics / EE

Perceptron
Incremental Gradient
Back Propagation (NNs)
Oja’s iteration (PCA)
LMS Filter

Has been around for a while, for good reasons:
- Robust to noise
- Simple to implement
- Near-optimal learning performance *

- Small computational foot-print
R RRRRBRBRBRBRRRRESSSSBEDEBBEBBEEEESSBB=D=SNS

Stochastic Gradient Descent

SGD can take 10+ days on large data sets
[DawnBench, 2017]

Goal:
Speed up Machine Learning

|dea

scale

Train at

190
4 z %
\
\

/|

W o/

¥,
»@/

7

72

- s 1
W \
) Ty 5
e - 4 y/ .Y
[c> 3 s 4

T ﬁ. T

JEp———————————

' !2?,

‘/r.:

Y

Platforms

Parallel

Single machine, multicore Multi-socket NUMA

I a0 0 -

master node
(parameter server)

/o
Controller

Thousands

CLOUD | Data Centers

Slower because of the network

Millions
e W FOG | Nodes s o
Gl a2 LYK
2 i X Billions

{I {l e o o {' EDGE | Devices

worker | worker 2 worker P

Xinyi Chen
Non uniform memory access

Xinyi Chen
Slower because of the network

Parallel vs. Distributed

- Parallel (CPU)
* Single machine, many cores (usually up to100s)
* Shared memory (all cores have access to RAM)
« Comm.to RAM is cheap

Communication

- Distributed
* Many machines (usually up to1000s) connected via network
* Shared-nothing architecture (each node has its own resources)
* Communication costs non-negligible

Scaling up vs. Scaling out

Xinyi Chen
Communication

Xinyi Chen
高亮

Xinyi Chen
高亮

Xinyi Chen
高亮

Scaling up vs. out

VWhat we'd ideally like

* Cores OO
e RAM O
e Comm.Cost 0
e Costtobuild ()

Feasible solutions:

Scaling up:
* Getting the largest machine possible, with maxed out RAM

Scaling out:
* Getting a bunch of machines, and linking them together

EEE———————————————
Scaling up vs. out

Scaling up Scaling out

Pros:
Much cheaper (especially on Ec2)
Can replace faulty parts
Better fault tolerance (if it matters)

Pros:
RAM comm. cheap (no network)
Less impl. overheads
Less power/smaller footprint

Cons:
Network bound
Major implementation overnheads
Large power footprint

Cons:
|00s cores/machine = expensive
Smaller fault tolerance
Limited upgradability

Xinyi Chen
If one fails, the system is dead

Choosing your Hardware

Price Comparisons for 4 GPUSs racks

* Single machine multi-core (CPU)

For 4 Tesla L0 GPU work station:
A100

more than $60,000

e Alternative Choice: Rent instances
amazon [EC 2
web services™

. Google Cloud Platf
-- Microsoft oogle Cloud Platrorm
Wl Azure

EC2 Price for Scaling-up to 28 cores

e Alternative Choice: Rent Instances

Deciding on HW s a lot of work

p3.16xlarge 8 NVLink 128 64 488 25 Gbps 14 Gbps $24.48 $15.91 $9.87

* Price for 4 GPUs: $8/hr
|0 days nonstop/month, for a year ~ $23,000

Let's Think about Running Stuft

How to Parallelize
Wrt1 = Wi — YV, (Wi; x;)

- Parallelize computation of one update!
|ssue:
computing N4; (w; ;)cheap (even for deep nets) [O(d)]

_) FREST, IEIE— i mini-batchsERE,
Pa‘ra‘”el Upda‘%%% B #1737 F—""mini-batch
Issue: SGD s inherently serial.. ..

Q: Can we parallelize inherently serial algorithms?

Xinyi Chen
内在的

Xinyi Chen
所谓串行，指的是一个mini-batch完成后，再进行下一个mini-batch

Xinyi Chen
高亮

Simple idea

- Compute multiple gradients in parallel
KR iZ2epochBlitEX

Wit1 = W — YVE

()
Wet1 = W — YV g2 (wg; x;)
Wit1 = W — YV ()

()

Q: Does it perform the same as SGD?

Xinyi Chen
K应该是epoch的计数

Distribute the effort!

o
o
e
N
~
(%)
L
)
e
S
[
S

88-/87600-TWY

> >
= =
i ~
=l =l
S S
O© O
N N
© (o]
> b
= =
o] ©
& &

Flas LEE— 1/ VRE

- Many models weaker than one
- Delays and Slow Nodes Theory
Several issues - Communication Costs

Practice

Xinyi Chen
每个机器上都有一个小模型

Choosing an Algorithm

The Master-worker Setting

master node
(parameter server) RBTHEMES

ZEEBHE, EECH

A W ‘
BB Himini batch, %A
{I {I c o o {I [51EAN & & [Blmaster

worker | worker 2 worker P

Xinyi Chen
只有神经网络

Xinyi Chen
各自都有数据，在自己的数据中做mini batch，然后把权重发回master

Algorithm of choice: minibatch SGD

master node
(parameter server)

=

worker | worker 2 worker P

Algorithm of choice: minibatch SGD

master node

(parameter server)
Stores the model

q g -

worker | worker 2 worker P

Gradient Computations

Algorithm of choice: minibatch SGD

master node
(parameter server)

I W g worker{E BRI 2 — T4 &3

Hweight

g9 0

worker | worker 2 worker P

Xinyi Chen
所有worker使用的是一开始发来的weight

Algorithm of choice: minibatch SGD

master node
(parameter server)

ﬁiw

b
worker | worker 2 worker P
g1 =Y VI((xi,5:); W) gp = Y VO((xi,y:);w)

€51 SiR— M worker I ER A IR €SP

Xinyi Chen
Si是一个worker中所有的数据

Algorithm of choice: minibatch SGD

master node
(parameter server)

e

worker | worker 2 worker P

g1,
-

Algorithm of choice: minibatch SGD

master node
(parameter server) P

HYER IR ER A —1*

ﬁiﬁ'mﬁig

worker | worker 2 worker P

Xinyi Chen
各自的数据都不一样

N
Algorithm of choice: minibatch SGD

Repeat distributed iterations until

we are happy with the model

tvaluating the performance of

Distributea ML

Many Questions.. ..

ow fast does minibatc
OW Can we measure s

N-SGD converge!?

AveragetgHy 2 Emaster

Deedups! node Az

Comm. Is expensive, how often do we average!
How do we choose the right model!

* What happens with delayed nodes?

* Does fault tolerance matter?

Xinyi Chen
Average指的是在master node上进行合并权重

t 15 t .
—E'— peech 42M parameters
_Qé- mages: 80M parameters
7 1 330M parameters .
% 557+e— :E%@j)’7@’ E@Q;g 5 dan op’umal
1
5 161 ! -
NI
IS
|
= 1
Q, _ -

e

16 32

64 128

Machines per model instance
“Large Scale Distributed Deep Networks” [Dean et al., NIPS 2012]

Why so slow?

Two factors control run-time

Time to accuracy € =

[time per data pass] X [#passes to accuracy €]

Xinyi Chen
Epoch numbers

Xinyi Chen
Time cost of each epoch

Speedup over one worker per epoch

35

30+

25

20

15+

10 -

Why so slow?

“[...] on more than 8 machines [...]
network overhead starts to dominate [...]"

TL:DR: Communication is the Bottleneck Larger batch size faster but more

Why!

learlo Epoch Tlme Speedup

expenswe on communication

Why is this better than optimum

*—eo g7_ 2 worker batchsize=64

e—e (2.2 worker_batchsize=512

e—e (2.2 worker_batchsize=4096
Optimal speedup

o —e—+

5 10 15 20 25
Number of workers

30

35

More worker, less batch numbers

Time per pass:
time for dataset_size/batch_size
distributed iterations

Bigger Batch
—> Less Communication
(smaller time per epoch)

Xinyi Chen
Why is this better than optimum

Xinyi Chen
Larger batch size faster but more expensive on communication

Xinyi Chen
More worker, less batch numbers

- If small batch is bad, then maximize it

80

70

Number of Epochs
(=]
o

w
o
T

20

10

What's wrong with Large Batches!

Cifarl0 - number of epochs to 95% train accuracy

e—e 95% train accuracy, g2.2xlarge

0 500 1000 1500 2000

Batchsize

2500

Large Batch
—> worse train error

(more #passes to accuracy g)

Large Batch
=> worse generalization

[Keskar, Mudigere, Nocedal,
Smelyanskiy, Tang, ICLR 2017]

Xinyi Chen

Xinyi Chen

How to analyze parallel algorithms?

* Main measure of performance

Time of serial A to accuraccy €
speedup =

Time of parallel A to accuraccy e

Example: Gradient Descent

Embarrassingly Parallel O(#cores) speedup

Not true for mini-batch SGD

Xinyi Chen

Xinyi Chen

Xinyi Chen

How to Analyze mini-batch?

e Measure of per'formance Epsilon is the accuracy goal

bound on #iter of SGD to €
bound on #iter of Parallel SGD to ¢

worst case speedup =

Main Question:

How does minibatch SGD compare against serial SGD?

Main questions:
Convergence after T gradient computations

Answer is Complicated: Depends on Problem [
Generally if batch B_O > B(data, loss) Diversity

related

Minibatch SGD offers no speedup.

Xinyi Chen
Epsilon is the accuracy goal

Generalization!

Do models trained with minibatch SGD generalize

You can’t train your neural network on too large batch size

Batch | Top-1 Acc | Top-5 Acc
256 58.42% 81.51%
512 59.19% 81.84%
1024 59.00% 81.94%
2048 58.88% 81.73%
4096 57.97% 81.00%
8192 55.90% 79.40%

Alexnet on Imagenet

Xinyi Chen
You can’t train your neural network on too large batch size

How to choose the right model

Some models are better than others,
even from a systems perspective

How to choose the right model

Some models are better than others,
even from a systems perspective

It's fully connected so it's
hard to find a place to split

Machine |
T PuUlydel

WONBTRIBEIRINAFE, FIRBHEK (B

RBE)

Machine 3
{ aulydel

Xinyi Chen
It’s fully connected so it’s hard to find a place to split

Xinyi Chen
被切断的链接仍然存在，并没有消失（具体实现不清楚）

How to choose the right model

Some models are better than others,
even from a systems perspective

Does it fit in a single machine!?

- <

())

£ 2l

< el .

é’ a °* Ismodel architecture amenable
N . .

to low communication?

0 <X« Some models easier to partition
(@]

= >

(@) -

(4] (@] . .

> ~ * Can we increase sparsity (less comm)

without losing with accuracy?

Xinyi Chen
What do we do with the cutted connection

How to chose the right model

Some models are better than others,
even from a systems perspective

15

—&— Speech: 42M parameters
- € - Images: 80M parameters
=v=Images: 330M parameters -
—6— Images: 1.7B parameters v

—
o
T
\
\

=
--
-
-

Training speed-up
o1
%

O1 16 32 64 128
Machines per model instance

Parallelism Gains?

* Weak Scaling; Easy

* Strong Scaling: Nontrivial, and not there yet

Major Open Problem!!!

Avoliding Communication

Bottlenecks

Large-scale Distributed Machine Learning Systems

Storage Communication Computation

Data a Distributed

Data Storage

T

Network Aggregator

A better algorithm!?

: mastet'” node) Communication / worker:
parameter server . . .
O(size of gradient)*32 bits

Q: Lower precision!?
O(size of gradient)*4 bits

A Yes! RIEFBE, BARTEFER SGD

o

TE

worker | worker 2 worker P

A lot of recent work on quantized SGD

Xinyi Chen

Xinyi Chen
降低精度，减少内存的 SGD

QSGD: Communication-Efficient SGD
via Gradient Quantization and Encoding

Time per epoch (hours)

Dan Alistarh Demjan Grubic Jerry Z. Li
IST Austria & ETH Zurich ETH Zurich & Google MIT
dan.alistarh@ist.ac.at demjangrubic@gmail.com jerryzli@mit.edu
Ryota Tomioka Milan Vojnovic
Microsoft Research London School of Economics

M.Vojnovic@lse.ac.uk

VGG19

ryoto@microsoft.com

|EEm 2GPUs [0 4GPUs [8GPUs [16 GPUs|

SGD QSGD 4bit (d=512)

Data Shuftling

Data EIVI odelj
Random ﬂ

(N (N [N

SGD

>
=
=
=)
=]
B
~
®
B
>
©
&
a

\ l /Merge models

Parallel Stochastic Gradient Descent (PSGD)

Shuffle data in different machines cost a lot

Data shuffling

Very

ish communication cost:

does S

nuffling still makes sense?

U SN ymayuSmsngzasngme] o
20 O 0 20 40
Epochs

PSGD with shuffling converges faster

* [Recht and Re, 201 3], [Bottou, 2012], [Zhang and Re, 20147, [Gurbuzbalaban et al,, 2015], [loffe and Szegedy, 2015], [Zhang et al. 2015]

Xinyi Chen
Shuffle data in different machines cost a lot

Bottleneck 2: Straggling Learners

¥ G LATS0TY
¥ G LS00
88-L87600- TWY 4
* 8g-v87600- TV
88-L87600- TWY 4

Iteration Completion Time per

Data set = CIFAR-10

t2.small EC2 instances

148 worker nodes, 1 parameter server

i . tlme
0.9 . F 1 i
:ﬁ 0.7 ’ ;
£ 6L 5% 0 ‘ . 1) C -
e Pt Pt e Can we “robustify” distributed ML
Zo4r against stragglers!
o3 s
EO 2 SRR > _6;'1: _______ N
0.1rF..
Probabilit

R I Nl a] | 'casured on Amazon AWS
T (anr

Xinyi Chen
Probability

Xinyi Chen

Xinyi Chen
If you wait for all to finish, it takes a long time

A case against Synchronization

overheads

_’A~~

timeline

CPU |
CPU 2
CPU 3

stragglers

Asynchronous World

CPU |
CPU 2 Faster

>
CPU 3 Easier to
Implement

Xinyi Chen

Stragglers

* |deal compute time per node ~ O(total_time/P)

e But there is a lot of randomness:

- Network/Comm Delays
- Node/HW Failures
- Resource Sharing

* What if time per node Is a random variable:
X = constant + Exp(A)

Remark:
Slowest node is

log(n) times slower
than fastest

Simulation

« X() = I+ Exp(0.5),n = 10, 100, 1000, 1000

6 . :
n =10 n = 100

Straggler issue:

leads to slower mini-batch SGD
implementations

time
N
time

51 /
ol .
0 . 0 A
200 400 600 800 1000 2000 4000 6000 800010000

1-th compute node 1-th compute node

Parallelizing Sparse SGD on shared

memory architectures

Xinyi Chen

Single Machine, Multi-core

Asynchronous SGD on Sparse

Functions

SGD on sparse functions

f(x) — Z fe(xe)

ec&

¢ Def:
Hyperedge € = the subset of variables that f, depends on

* The function-variable graph

Matrix Fact/Comp.
Graph cuts
Graph/text Classification

Topic Modeling
Dropout

Xinyi Chen

Xinyi Chen

SGD on sparse functions

Data points Model

Step |:
Pick random data point

Xinyi Chen

SG

Data points Model

-
7 oA

Read o

D on sparse functions

Step 2:
Read Variables

Xinyi Chen

SGD on sparse functions

Data points

|
Compute grad. PR <"
of local loss {rog N

V fs, ()

Step3:
Compute local function

SGD on sparse functions

Data points

Update Model

T x—7 - Vs, (2)

Only calculate the gradient
of the variable in function

Step4:
Update Model

Xinyi Chen
Only calculate the gradient of the variable in function

Examples of Sparse Problems

Sparse Support Vector Machines

sparse vectors

minimize,, Z max(1 — yafETZom 0) + AHfEH%
acel

Matrix Completion

R* ®
M =| L
[|
dy x d> dy xr rx dp
(di=dy)

Entries Specified on set E (with |E|=n)

(u,v)eE

Graph Cuts

o

n=|E]

* Image Segmentation
* Entity Resolution
* lopic Modeling

subject to 1%4x, =1, z, >0, forv=1,...,D

Sparsified BackProp

Dropout: drop some nodes

oo
\0%&)%6\&0

\X 4«“\ e\ X 4«“

W WO
\ XN NN
v‘.\; XS fowo»f"

AY2
X

: RO
.‘\af. KR
NG
17>\
Yy

ANe
N

(b) After applying dropout.

Standard Neural Net

~~
<
S—r

Xinyi Chen
Dropout: drop some nodes

Challenges in Parallel SGD

data points shared variables

No conflict =>
2 parallel iterations = 2 serial iterations

Xinyi Chen

Challenges in Parallel SGD

data points shared variables

No conflict => Speedup

Challenges in Parallel SGD sharedrAv

data points shared variables

/’ N\

oops, conflicts

2NCPUEFT T Rl —1%
&, BrlEEESHNERN
ik, =EMEBZH6)ZR

Who will define the sparse function?

What should we do for conflicts?

Approach |: Coordinate or Lock
Approach 2: Don't Care (Lock-free Async.)

Xinyi Chen
Shared RAM

Xinyi Chen
2个CPU更新了同一个参数，那么后面合并权重的时候，会出现覆盖的问题

Xinyi Chen
Who will define the sparse function?

°rior to 201 | Work

Long line of theoretical work since the 60s

[Chazan, Miranker, 1969]

Foundational work on Asynchronous Optimization

Master/Worker model [Tsitsiklis, Bertsekas, 1986, 1989]

Recent hardware/software advances renewed the interest
Round-robin approach [Zinkevich, Langford, Smola, 2009]
Average Runs [Zinkevich et al., 2009],

Average Gradients [Duchi et al, Dekel et al. 201 0]

Many based on “"Coordinate” or “Lock’ approach "Q}

Why Coordinate or Lock?
[ssue: Synchronization and comm. overheads

Xinyi Chen

HOGWILD! w1,

“Run pardllel lock-free SGD without synchronization”

-

Each processor in parallel 5

Wright

SVM RCVI (10 cores)

al —Hogwild
sample function f; 21 -
x = read shared memory g3 ~RR o T
o | S .
g=—v-Vfi(z) g2 .
for v in the support of f do o= f
Ty & Ty + Gu (‘)9 5 A & s 0
HEFTIETILL %, Number of Splits

Impact

Google Downpour SGD, g Microsoft Project Adam use HOGWILD!
Renewed interest on async. optimization

Xinyi Chen

Xinyi Chen
只更新f映射的那些参数

Speedups

5 ‘ ‘ 6 ‘ ‘ 5 ‘ ‘
al —Hogwild 55 —Hogwid 7 al —Hogwild
o | o4
23 ~--RR - LT =
- S S
] . @ 3
o S .- @
Q.2 o
w | n 2
1 _r___;‘ __________________________ 1
0 0 ‘ 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of Splits Number of Splits Number of Splits
SVM MC CUTS
RCVI Netflix Abdomen

Experiments run on |2 core machine
| O cores for gradients, | core for data shuffling

Challenges in Analysis

Challenges in Hogwild!

Shared Memory

Processor |

Issues:
| updates can be old
2. results can overwritten

Processor 2 @

Processor P @

Incompatible with classic SGD analysis

Xinyi Chen

Analyzing Asynchronous Schemes

A Noisy Lens Meis
for Asynchronous Algorithms

Noisy viewpoint:
Asynchronous(Algo.(INPUT)) = Serial(Algo.(INPUT + Noise)

HUELAY

Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
[Mania, Pan, P, Recht, Ramchandran, Jordan, 2015]

SDF 91

Joint work with ’\‘

Xinyi Chen
Noice的视角

Xinyi Chen

Xinyi Chen
扰乱的

=

fn

T Each processor in parallel

)

Ld

HOGWILD! as noisy SGD

sample function f;

x = read shared memory

g=—v-Vfi(x)

for v in the support of f do
Ty £ Ty + G

* Def: Sk isthe k-th sampled data point

* Fact: Cores don't read “actual” iteratesT ;
but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

Ex.

Xinyi Chen

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 : x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)
\ 3 ™

Ex Qo@ C/O@ C/O@ RAM
I 0 0
0 5 |

0 0 7

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ ™
Ex Qo@ (/o@% C/O@ RAM
I - - 0
0§51 ||

0 o) 7

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ %
Ex Qo@ (/o@% C/O@ RAM
I - 0 0
0 Ys5i | 5

0 o) 7 0

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 : x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ % ™

Ex Qo@ C/O@ C/O@ RAM
-- —I
1, 0 0 0
0" 5 | 5

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 : x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

\ % ™

Ex Qo@ C/O@ C/O@ RAM
r~- —I
1, 0 0 |
0" 5 | 5

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 : x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)
\ 3 ™

Ex Qo@ C/O@ C/O@ RAM
| 0 0. |
0 5 b1y 6
0 0 0

HOGWILD! as noisy SGD
__an

J =% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 : x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
d ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)
\ 3 ™

Ex Qo@ C/O@ C/O@ RAM
I 0 0 |
0 5 A 6
7/ 7/

0 0o 1
I-

HOGWILD! as noisy SGD
. __an

=% "2 | sample function f; * Def: Sk is the k-th sampled data point
f2 x = read shared memory
: g=—7Vfiz)
- for v in the support of f do , » .
/ ., 5 4 0 S Fact: Cores don't read “actual” iterates

but "noisy iterates” ;.

* After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

Lo — 7Y - VfSO(QAf()) BRI vaT—l(‘C%T_l)

Main Questions:

) Where does noise come from!?
2) How strong is it!

Understanding Asynchrony Noise

timeline
>
CPU | Sample |
CPU 2 Sample 2

CPU 3 Sample 3

Understanding Asynchrony Noise

timeline f1 /.
> 5 Z:

CPU | Sample | fs
CPU 2 Sample 2 w
CPU 3 Sample 3 I3 \.

“Serialized”’ Processing Timeline

Understanding Asynchrony Noise

timeline f1 /.
= 5 Z:

CPU | Sample | fs
CPU 2 Sample 2 w
CPU 3 Sample 3 I3 \.

“Serialized”’ Processing Timeline

Understanding Asynchrony Noise

timeline f1 /.
= 5 Z:

CPU | Sample | fs
CPU 2 Sample 2 w
CPU 3 Sample 3 I3 \.

“Serialized”’ Processing Timeline

S\

e
o~ |

Understanding Asynchrony Noise

timeline f1 /.
> ; Z:

CPU | Sample | fo
CPU 2 Sample 2 w
CPU 3 Sample 3 I3 \.

“Serialized” Processing Timeline

Asynchrony noise Is combinatorial

coordinates in conflict can be as noisy as possible.
(no generative model assumptions)

Hogwild Rates: Proof Recap

Hogwild is equivalent to a noisy serial SGD

$

asynchrony noise affects rates, but if bounded, not by much

4

n

When core delay is less than 7 < , noise does not affect convergence

av

3

Hogwild! Achieves linear speedups
*=in terms of worst case convergence

Convergence of Hogwild

THEOREM 3.4. If the number of samples that overlap in time with a single sample
during the execution of HOGWILD! is bounded as

2
T:O(min{_n M }),
AC €m2

HOGWILD!, with step size v = 557, reaches an accuracy of E||xi — x*||* < € after

M*log (¢)
2

T>0(1)

€eEm

iterations.

Open Problems

Open Problems; Part |

Assumptions: Sparsity + convexity => linear speedups

OFP:
Hogowild! On Dense Problems

Maybe we should featurize dense ML Problems,

so that updates are sparse

OP:

Fundamental Trade-off
Sparsity vs Learning Quality?

Open Problems: Part 2

- What we proved:
bound on #iter of SGD to €

bound on #iter of Parallel SGD to €

- What we really care about:

worst case speedup =

Time of serial A to accuraccy ¢

speedup =

Time of parallel A to accuraccy e

O.P:
True Speedup Proofs for Hogwild

Holy Grall

O.P:
Guarantees for Nonconvex Problems?

Open Problems: Part 3

Hogwild! Algorithms great for Shared Memory Systems

. I/0
- Issues when scaling across nodes, due to comm

N

& OO
O e

speedup

>
#threads

How to provably scale on NUMA? controter

- Similar Issues for Distributed: Op-

Sync vs Async is still open

Xinyi Chen
可查验地

Reproducible Models

Reproducibility

EANLGRESEREN, BEMNINFA—=F

HOGWILD! Models are not reproducible

Fach training session has inherent “system”
randomness

Does not allow to recreate models If needed
AR

Barrier for accountability and reproducibility

How can we resolve It!

Xinyi Chen

Xinyi Chen
因为结束时间随机，覆盖的顺序不一样

Xinyi Chen
可解释性

Presentation Suggestion

Suggestion: Minibatch, Hogwils Analysis! Hadoop!?

Next Week's Presentation

Polyak, Boris T. "Some methods of speeding up the convergence of iteration
methods." Ussr computational mathematics and mathematical physics 4.5 (1964):
1-17.

Sutskever, llya, et al. "On the importance of initialization and momentum in deep
learning." International conference on machine learning. PMLR, 2013.

Why Momentum Really Works, Distill, [Goh,
2017]. http://doi.org/10.23915/distill.00006

Martens, James, and Roger Grosse. "Optimizing neural networks with kronecker-
factored approximate curvature." International conference on machine learning.

PMLR, 2015.

http://doi.org/10.23915/distill.00006

	Distributed SGD
	Asynchronous SGD on Sparse Functions
	HOGWILD

