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Mostly Challenges



Overview
- Multicore vs. Distributed

- Algorithms of choice

- Open challenges with Performance Gains/Analysis

- Convergence/Generalization/Speedup/Delays?

- Straggler Nodes

- Adversarial attacks



Stochastic Gradient Descent

- Idea (‘50s, ‘60s [Robbins, Monro], [Widrow, Hoff]): 
Sample a data point + locally optimize.

loss for data point i

SGD:  An Über-algorithm

min
w

1

n

nX

i=1

`(w; zi)

wk+1 = wk � � ·r`(wk; zik)

Different names and flavors

ML / Optimization / Statistics / EE
Perceptron

Incremental Gradient
Back Propagation (NNs)

Oja’s iteration (PCA)
LMS Filter 

…

Has been around for a while, for good reasons:
- Robust to noise

- Simple to implement
- Near-optimal learning performance *

- Small computational foot-print



Stochastic Gradient Descent

SGD can take 10+ days on large data sets 
[DawnBench, 2017]

Goal:
Speed up Machine Learning

Months!



Idea:
Train at scale



Platforms
Parallel

Single machine, multicore Multi-socket NUMA

Distributed

Xinyi Chen
Non uniform memory access 

Xinyi Chen
Slower because of the network



Parallel vs. Distributed
- Parallel (CPU)
• Single machine, many cores (usually up to100s)
• Shared memory (all cores have access to RAM)
• Comm. to RAM is cheap

- Distributed 
• Many machines (usually up to1000s) connected via network
• Shared-nothing architecture (each node has its own resources) 
• Communication costs non-negligible

Scaling up vs. Scaling out

Xinyi Chen
Communication 

Xinyi Chen
高亮

Xinyi Chen
高亮

Xinyi Chen
高亮



Scaling up vs. out
What we’d ideally like

• Cores
• RAM
• Comm. Cost
• Cost to build

Feasible solutions:

Scaling up: 
• Getting the largest machine possible, with maxed out RAM

Scaling out: 
• Getting a bunch of machines, and linking them together
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Scaling up vs. out

Scaling up 

Pros:
RAM comm. cheap (no network)

Less  impl. overheads 
Less power/smaller footprint

Cons:
100s cores/machine = expensive

Smaller fault tolerance
Limited upgradability

Scaling out

Pros:
Much cheaper (especially on Ec2)

Can replace faulty parts
Better fault tolerance (if it matters)

Cons:
Network bound

Major implementation overheads
Large power footprint

Xinyi Chen
If one fails, the system is dead



Choosing your Hardware



Price Comparisons for 4 GPUs racks
• Single machine multi-core (CPU)

For 4  Tesla V100 GPU work station:

• Alternative Choice: Rent instances

more than  $60,000
A100



EC2 Price for Scaling-up to 128 cores

• Alternative Choice: Rent Instances

• Price for 4 GPUs: $8/hr
10 days nonstop/month,  for a year ~ $23,000

Deciding on HW is a lot of work



Let’s Think about Running Stuff



How to Parallelize

- Parallelize computation of one update?
Issue:
computing                 cheap (even for deep nets) [ O(d) ] 

- Parallel Updates?
Issue: SGD is inherently serial….

Q: Can we parallelize inherently serial algorithms?

r`i(w;xi)

wk+1 = wk � �r`sk(wk;xi)

Xinyi Chen
内在的

Xinyi Chen
所谓串行，指的是一个mini-batch完成后，再进行下一个mini-batch

Xinyi Chen
高亮



Simple idea
- Compute multiple gradients in parallel

wk+1 = wk � �r`s1k(wk;xi)

wk+1 = wk � �r`s2k(wk;xi)

wk+1 = wk � �r`s3k(wk;xi)

wk+1 = wk � �r`s4k(wk;xi)

Q: Does it perform the same as SGD?

Xinyi Chen
K应该是epoch的计数



Practice

Theory 

Distribute the effort!

Several issues

- Many models weaker than one
- Delays and Slow Nodes
- Communication Costs
- Barriers to entry / High Cost
- Implementation Overhead
- Nontrivial choice of ML-framework

Xinyi Chen
每个机器上都有一个小模型



Choosing an Algorithm



The Master-worker Setting

Xinyi Chen
只有神经网络

Xinyi Chen
各自都有数据，在自己的数据中做mini batch，然后把权重发回master



Algorithm of choice: minibatch SGD



Stores the model

Gradient Computations

Algorithm of choice: minibatch SGD



Algorithm of choice: minibatch SGD

w

w
w

w

Xinyi Chen
所有worker使用的是一开始发来的weight



w

gP =
X

i2SP

r`( (xi, yi);w )g1 =
X

i2S1

r`( (xi, yi);w )

Algorithm of choice: minibatch SGD

Xinyi Chen
Si是一个worker中所有的数据



g1 gP

Algorithm of choice: minibatch SGD



w = w � �
PX

i=1

gi

Algorithm of choice: minibatch SGD

Xinyi Chen
各自的数据都不一样



Algorithm of choice: minibatch SGD

Repeat distributed iterations until 
we are happy with the model



Evaluating the performance of 
Distributed ML



Many Questions….

• How fast does minibatch-SGD converge?
• How can we measure speedups?
• Comm. is expensive, how often do we average?
• How do we choose the right model?
• What happens with delayed nodes?
• Does fault tolerance matter?

Xinyi Chen
Average指的是在master node上进行合并权重



portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD, which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

5 Experiments

We evaluated our optimization algorithms by applying them to training models for two different deep
learning problems: object recognition in still images and acoustic processing for speech recognition.

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [27] for similar deep network configurations and training
procedures.

For visual object recognition we trained a larger neural network with locally-connected receptive
fields on the ImageNet data set of 16 million images, each of which we scaled to 100x100 pixels [28].
The network had three stages, each composed of filtering, pooling and local contrast normalization,
where each node in the filtering layer was connected to a 10x10 patch in the layer below. Our
infrastructure allows many nodes to connect to the same input patch, and we ran experiments varying
the number of identically connected nodes from 8 to 36. The output layer consisted of 21 thousand
one-vs-all logistic classifier nodes, one for each of the ImageNet object categories. See [29] for
similar deep network configurations and training procedures.

Model parallelism benchmarks: To explore the scaling behavior of DistBelief model parallelism
(Section 3), we measured the mean time to process a single mini-batch for simple SGD training as
a function of the number of partitions (machines) used in a single model instance. In Figure 3 we
quantify the impact of parallelizing across N machines by reporting the average training speed-up:
the ratio of the time taken using only a single machine to the time taken using N. Speedups for
inference steps in these models are similar and are not shown here.

The moderately sized speech model runs fastest on 8 machines, computing 2.2⇥ faster than using a
single machine. (Models were configured to use no more than 20 cores per machine.) Partitioning
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Speech: 42M parameters
Images: 80M parameters
Images: 330M parameters
Images: 1.7B parameters

Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.
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WHY?

“Large Scale Distributed Deep Networks” [Dean et al., NIPS 2012]



Why so slow?

Two factors control run-time

Time to accuracy ε = 
[time per data pass]  X  [#passes to accuracy ε]

Xinyi Chen
Epoch numbers

Xinyi Chen
Time cost of each epoch



Why so slow?

- TL;DR: Communication is the Bottleneck
- Why? 

“[…] on more than 8 machines […] 
network overhead starts to dominate […]”

Bigger Batch 
Þ Less Communication
(smaller time per epoch)

Time per pass:
time for dataset_size/batch_size

distributed iterations

Xinyi Chen
Why is this better than optimum 

Xinyi Chen
Larger batch size faster but more expensive on communication 

Xinyi Chen
More worker, less batch numbers



What’s wrong with Large Batches?

- If small batch is bad, then maximize it

Large Batch 
Þworse train error

(more #passes to accuracy ε)

Large Batch 
=> worse generalization

[Keskar, Mudigere, Nocedal, 
Smelyanskiy, Tang, ICLR 2017]

Xinyi Chen

Xinyi Chen



How to analyze parallel algorithms?
• Main measure of performance

speedup =
Time of serial A to accuraccy ✏

Time of parallel A to accuraccy ✏

- Convergence is invariant of allocation
- Both algorithms reach to same accuracy after T iterations

- Speedup is independent of covergence rate

Example: Gradient Descent

Serial

Parallel

xk+1 = xk � � · 1
n

nX

i=1

rfi(xk)

xk+1 = xk � � · 1
n

 
PX

i1=1

rfi1(xk) + . . .+
nX

iP=n�P+1

rfiP (xk)

!

Not true for mini-batch SGD

Embarrassingly Parallel O(#cores) speedup

Xinyi Chen

Xinyi Chen

Xinyi Chen



How to Analyze mini-batch?
• Measure of performance

worst case speedup =
bound on #iter of SGD to ✏

bound on #iter of Parallel SGD to ✏

Main Question:
How does minibatch SGD compare against serial SGD?

Main questions:
Convergence after T gradient computations

Answer is Complicated: Depends on Problem
Generally if batch B_0 > B(data, loss) 

Minibatch SGD offers no speedup.
Diversity 
related

Xinyi Chen
Epsilon is the accuracy goal



Generalization?

Do models trained with minibatch SGD generalize
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st.dev Train Acc(%) Test Acc(%) E[OSG]

1 100±0 98.11±0.09 0.13±0.01
5 100±0 97.79±0.07 0.13± 0
10 100±0 97.60±0.04 0.17 ± 0.02
20 100±0 97.44±0.04 0.20 ± 0.01
50 100±0 97.09±0.2 0.26 ± 0.01

Table 2. Experimental results of training MNIST with 2-layered
neural network, with different variance of the random distribution
of the initial weight in the first layer. All results are observed when
the training loss reaches 0.001.

Batch Top-1 Acc Top-5 Acc E[OSG] OSG st.dev

256 58.42% 81.51% 458 71
512 59.19% 81.84% 505 78

1024 59.00% 81.94% 566 85
2048 58.88% 81.73% 631 93
4096 57.97% 81.00% 663 99
8192 55.90% 79.40% 668 105

Table 3. ImageNet training with AlexNet. All results are observed
when top-1 training accuracy reaches 99%.

5.2. Theoretical Analysis

In this section, we provide some light proof that connects
point-wise hypothesis stability and the Hessian as well as
the OSG norms at global minima of a loss function.

To present our results, we need to define the Polyak-
Łojasiewicz (PL) condition (Karimi et al., 2016):
Definition 5.1 (PL). A function f satisfies the Polyak-
Łojasiewicz (PL) condition on a domain W , if there exists a
µ > 0, such that for all w 2 W we have

1

2
krf(w)k2 � µ(f(w)� f⇤),

where f⇤ is the global minimum value of f .

When a function is PL, all its stationary points are global
minima. Note that strong convexity implies PL, but PL does
not imply strong convexity, as it allows for multiple global
minima. PL is a stronger condition than Quadratic Growth
condition that is defined below:
Definition 5.2 (QG). A function f satisfies the Quadratic
Growth (QG) condition on a domain W , if there exists a
µ > 0, such that for all w 2 W we have

f(w)� f⇤
�

µ

2
kw �⇧W⇤(w)k2,

where f⇤ is the global minimum value of f , and ⇧W⇤(w)
is the Euclidean projection of w onto the set of globally
optimal points W⇤ of f .

A recent important work (Dinh et al., 2017) inspired us to re-
think the relationship between sharpness and generalization,

by indicating that neural networks could easily manipulate
the Hessian by rescaling different layers of weights. This
tells us the Hessian of one specific local/global minimum
could not possibly directly interpret generalization. Even
though empirically people continue to see the direct con-
nection between sharpness and generalization. Our work
resolves this paradox by looking at the Hessian(sharpness)
of the global min in a range as a whole.

We need an additional assumption:

Assumption 5.3. The empirical risk fS is µ-QG in W , if
for all w 2 W and S ⇠ D

n:

fS(w) �
µ

2
kw �⇧W⇤

S
(w)k2

where ⇧W⇤
S
(w) is the Euclidean projection of a model w on

the set of globally optimal models W⇤
S with respect to fS .

Theorem 5.4. For a loss function f satisfying Assumption
3.3 and 5.3, suppose there exists an algorithm A that given
any input datasets S = {z1, z2 · · · zn}, its output A(S) sat-
isfies A(S) ⇢ WS and define B✏

S = {x|9i, d(x,A(Si)) 
✏}, then this algorithm A has pointwise stability guaranteed
to be bounded by

✏2n
n
ES max

w2WS\B✏n
S

nX

i=1

kr
2f(w; zi)k2 +O(✏3n)

, where µ and c come from the properties of f given in
Assumption 3.3, and ✏n =

q
2c
nµ . Meanwhile, we could also

bound stability with OSGs:

✏n
2n

ES max
w2WS\B✏n

S ,krk✏n

nX

i=1

krf(w + r; zi)k2 +O(✏3n)

In this proof, we bound stability (thus generalization, from
Theorem 3.2) by the maximum OSG norms close to the
global minimas that function could converge to.

(Neyshabur et al., 2017) also connects some proxy of gen-
eralization gap with the expected sharpness at different w.
It advantage is the sharpness is at specific point and it loses
some additional assumption than ours. However, our bound
is much stronger since we bound generalization with

q
1
n

times the expected sharpness.

5.3. Problems with Quadratic Growth loss functions

A natural question is: Are there any non-trivial models that
satisfy the QG inequality on a certain domain? We hereby
show that under a few natural assumptions some neural
networks will satisfy this condition.

First let’s look at individual functions:

Alexnet on Imagenet

Xinyi Chen
You can’t train your neural network on too large batch size



How to choose the right model

Some models are better than others, 
even from a systems perspective



How to choose the right model

Some models are better than others, 
even from a systems perspective
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Xinyi Chen
It’s fully connected so it’s hard to find a place to split

Xinyi Chen
被切断的链接仍然存在，并没有消失（具体实现不清楚）



How to choose the right model

Some models are better than others, 
even from a systems perspective
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.
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• Does it fit in a single machine?

• Is model architecture amenable 
to low communication?

• Some models easier to partition 

• Can we increase sparsity (less comm) 
without losing with accuracy?

Xinyi Chen
What do we do with the cutted connection 



How to chose the right model

Some models are better than others, 
even from a systems perspective

portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD, which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

5 Experiments

We evaluated our optimization algorithms by applying them to training models for two different deep
learning problems: object recognition in still images and acoustic processing for speech recognition.

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [27] for similar deep network configurations and training
procedures.

For visual object recognition we trained a larger neural network with locally-connected receptive
fields on the ImageNet data set of 16 million images, each of which we scaled to 100x100 pixels [28].
The network had three stages, each composed of filtering, pooling and local contrast normalization,
where each node in the filtering layer was connected to a 10x10 patch in the layer below. Our
infrastructure allows many nodes to connect to the same input patch, and we ran experiments varying
the number of identically connected nodes from 8 to 36. The output layer consisted of 21 thousand
one-vs-all logistic classifier nodes, one for each of the ImageNet object categories. See [29] for
similar deep network configurations and training procedures.

Model parallelism benchmarks: To explore the scaling behavior of DistBelief model parallelism
(Section 3), we measured the mean time to process a single mini-batch for simple SGD training as
a function of the number of partitions (machines) used in a single model instance. In Figure 3 we
quantify the impact of parallelizing across N machines by reporting the average training speed-up:
the ratio of the time taken using only a single machine to the time taken using N. Speedups for
inference steps in these models are similar and are not shown here.

The moderately sized speech model runs fastest on 8 machines, computing 2.2⇥ faster than using a
single machine. (Models were configured to use no more than 20 cores per machine.) Partitioning
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Speech: 42M parameters
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Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.
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Parallelism Gains?

• Weak Scaling: Easy

• Strong Scaling: Nontrivial, and not there yet

Major Open Problem!!!



Avoiding Communication 
Bottlenecks
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A better algorithm?

g1 g2 gP

Communication / worker:
O(size of gradient)*32 bits

Q: Lower precision?
O(size of gradient)*4 bits

A: Yes!
A lot of recent work on quantized SGD 

Xinyi Chen

Xinyi Chen
降低精度，减少内存的 SGD



3.5x 1.6x

Figure 2: Breakdown of communication versus computation for various neural networks, on 2, 4, 8, 16 GPUs,
for full 32-bit precision versus QSGD 4-bit. Each bar represents the total time for an epoch under standard
parameters. Epoch time is broken down into communication (bottom, solid) and computation (top, transparent).
Although epoch time diminishes as we parallelize, the proportion of communication increases.

(a) AlexNet Accuracy versus Time. (b) LSTM error vs Time. (c) ResNet50 Accuracy.

Figure 3: Accuracy numbers for different networks. Light blue lines represent 32-bit accuracy.

NCCL extensions. We have implemented QSGD on GPUs using the Microsoft Cognitive Toolkit
(CNTK) [3]. This package provides efficient (MPI-based) GPU-to-GPU communication, and imple-
ments an optimized version of 1bit-SGD [35]. Our code is released as open-source [31].

We execute two types of tasks: image classification on ILSVRC 2015 (ImageNet) [12], CIFAR-
10 [25], and MNIST [27], and speech recognition on the CMU AN4 dataset [2]. For vision, we
experimented with AlexNet [26], VGG [36], ResNet [18], and Inception with Batch Normaliza-
tion [22] deep networks. For speech, we trained an LSTM network [19]. See Table 1 for details.
Protocol. Our methodology emphasizes zero error tolerance, in the sense that we always aim to
preserve the accuracy of the networks trained. We used standard sizes for the networks, with hyper-
parameters optimized for the 32bit precision variant. (Unless otherwise stated, we use the default
networks and hyper-parameters optimized for full-precision CNTK 2.0.) We increased batch size
when necessary to balance communication and computation for larger GPU counts, but never past the
point where we lose accuracy. We employed double buffering [35] to perform communication and
quantization concurrently with the computation. Quantization usually benefits from lowering learning
rates; yet, we always run the 32bit learning rate, and decrease bucket size to reduce variance. We will
not quantize small gradient matrices (< 10K elements), since the computational cost of quantizing
them significantly exceeds the reduction in communication. However, in all experiments, more than
99% of all parameters are transmitted in quantized form. We reshape matrices to fit bucket sizes, so
that no receptive field is split across two buckets.
Communication vs. Computation. In the first set of experiments, we examine the ratio between
computation and communication costs during training, for increased parallelism. The image classi-
fication networks are trained on ImageNet, while LSTM is trained on AN4. We examine the cost
breakdown for these networks over a pass over the dataset (epoch). Figure 2 gives the results for
various networks for image classification. The variance of epoch times is practically negligible (<1%),
hence we omit confidence intervals.

Figure 2 leads to some interesting observations. First, based on the ratio of communication to
computation, we can roughly split networks into communication-intensive (AlexNet, VGG, LSTM),
and computation-intensive (Inception, ResNet). For both network types, the relative impact of
communication increases significantly as we increase the number of GPUs. Examining the breakdown
for the 32-bit version, all networks could significantly benefit from reduced communication. For

8

QSGD: Communication-Efficient SGD
via Gradient Quantization and Encoding

Dan Alistarh
IST Austria & ETH Zurich
dan.alistarh@ist.ac.at

Demjan Grubic
ETH Zurich & Google

demjangrubic@gmail.com

Jerry Z. Li
MIT

jerryzli@mit.edu

Ryota Tomioka
Microsoft Research

ryoto@microsoft.com

Milan Vojnovic
London School of Economics
M.Vojnovic@lse.ac.uk

Abstract

Parallel implementations of stochastic gradient descent (SGD) have received signifi-
cant research attention, thanks to its excellent scalability properties. A fundamental
barrier when parallelizing SGD is the high bandwidth cost of communicating gradi-
ent updates between nodes; consequently, several lossy compresion heuristics have
been proposed, by which nodes only communicate quantized gradients. Although
effective in practice, these heuristics do not always converge.
In this paper, we propose Quantized SGD (QSGD), a family of compression
schemes with convergence guarantees and good practical performance. QSGD
allows the user to smoothly trade off communication bandwidth and convergence
time: nodes can adjust the number of bits sent per iteration, at the cost of possibly
higher variance. We show that this trade-off is inherent, in the sense that improving
it past some threshold would violate information-theoretic lower bounds. QSGD
guarantees convergence for convex and non-convex objectives, under asynchrony,
and can be extended to stochastic variance-reduced techniques.
When applied to training deep neural networks for image classification and au-
tomated speech recognition, QSGD leads to significant reductions in end-to-end
training time. For instance, on 16GPUs, we can train the ResNet-152 network to
full accuracy on ImageNet 1.8⇥ faster than the full-precision variant.

1 Introduction

The surge of massive data has led to significant interest in distributed algorithms for scaling com-
putations in the context of machine learning and optimization. In this context, much attention has
been devoted to scaling large-scale stochastic gradient descent (SGD) algorithms [33], which can be
briefly defined as follows. Let f : Rn ! R be a function which we want to minimize. We have access
to stochastic gradients eg such that E[eg(x)] = rf(x). A standard instance of SGD will converge
towards the minimum by iterating the procedure

xt+1 = xt � ⌘teg(xt), (1)

where xt is the current candidate, and ⌘t is a variable step-size parameter. Notably, this arises if
we are given i.i.d. data points X1, . . . , Xm generated from an unknown distribution D, and a loss
function `(X, ✓), which measures the loss of the model ✓ at data point X . We wish to find a model
✓⇤ which minimizes f(✓) = EX⇠D[`(X, ✓)], the expected loss to the data. This framework captures
many fundamental tasks, such as neural network training.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Parallel Stochastic Gradient Descent (PSGD)

SGD SGD SGD

Merge models

ModelData
Random

Data shuffling

PSGD with shuffling converges faster
* [Recht and Re, 2013], [Bottou, 2012], [Zhang and Re, 2014], [Gurbuzbalaban et al., 2015], [Ioffe and Szegedy, 2015], [Zhang et al. 2015] 

Very high communication cost:
does shuffling still makes sense?

Xinyi Chen
Shuffle data in different machines cost a lot



Bottleneck 2: Straggling Learners

model model model model model
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Iteration Completion Time per worker
Data set = CIFAR-10
t2.small EC2 instances
148 worker nodes, 1 parameter server

> 2x

> 6x

median
runtime

99.5%
runtime

100%
runtime

Measured on Amazon AWS

Can we “robustify” distributed ML
against stragglers?

Xinyi Chen
Probability 

Xinyi Chen

Xinyi Chen
If you wait for all to finish, it takes a long time



A case against Synchronization

CPU 1
CPU 2
CPU 3

timeline
CPU 1
CPU 2
CPU 3

Asynchronous World

overheads

stragglers

Faster

Easier to 
Implement

Xinyi Chen



Stragglers
• Ideal compute time per node ~ O(total_time/P)
• But there is a lot of randomness:

- Network/Comm Delays
- Node/HW Failures
- Resource Sharing

• What if time per node is a random variable:
X = constant + Exp(λ)

Lemma:

E{X(i)} = 1 +
1

�

nX

n�i+1

1

i

Remark:
Slowest node is 

log(n) times slower 
than fastest



i-th compute node
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Simulation
• X(t) = 1+ Exp(0.5), n = 10, 100, 1000, 1000

Straggler issue: 
leads to slower mini-batch SGD 

implementations



Parallelizing Sparse SGD on shared 
memory architectures

Xinyi Chen



Single Machine, Multi-core



Asynchronous SGD on Sparse 
Functions



SGD on sparse functions

• Def: 
Hyperedge = the subset of variables that depends on

• The function-variable graph

fe1
fe2

fen

fe1

fe2

fen

x1

x2

xd

Figure 1: The left bipartite graph has as left vertices the n function terms, and as right vertices the coordinates of
x. A term fei is connected to a coordinate xj , if hyperedge ei contains j (i.e., if the i-th term is a function of that
coordinate). The left graph denotes a conflict graph between the function terms. The vertices denote the function
terms, and two terms are joined by an edge if they conflict on at least one coordinate in the bipartite graph.

As we will see, under our perturbed iterate analysis framework the convergence rate of asynchronous
algorithms depends on the sparsity of the problem. Let us define by ∆C, the average degree in the conflict
graph, which denotes the average number of terms that are in conflict with a single term. We assume that
∆C ≥ 1, otherwise we could decompose the problem into smaller independent sub-problems.

Hogwild! (Alg. 1) is a method to parallelize SGM [1]. It is deployed on multiple cores that have access
to shared memory, where the optimization variable x and the data points that define the f terms are stored.
During its execution each core samples uniformly at random a hyperedge s from E . It reads the coordinates
v ∈ s of the shared vector x, evaluates ∇fs at the point read, and finally adds −γ∇fs to the shared variable.

Algorithm 1 Hogwild!

1: while number of sampled edges ≤ T do in parallel
2: sample a random hyperedge s
3: [x̂]s = an inconsistent read of the shared variable [x]s
4: [u]s = −γ · g([x̂]s, s)
5: for v ∈ s do
6: [x]v = [x]v + [u]v // atomic write
7: end for
8: end while

In Hogwild! cores do not synchronize or follow an order between reads or writes. Moreover, they
access/update a set of coordinates in x without the use of any locking mechanisms that would ensure a
conflict-free execution. The reads/writes of distinct cores can intertwine in arbitrary ways, e.g., while a core
updates a subset of variables, before completing its task, other cores can access/update the same variables.

In [1], the authors analyzed a simplified variant of Hogwild! where only a single coordinate per sampled
hyperedge is updated (i.e., the for loop in Hogwild! is replaced with a single coordinate update). This
simplification along with others, such as the assumption of consistent reads, alleviate some of the challenges
in analyzing the algorithm and allowed the authors to provide a convergence analysis. We show how our
perturbed gradient framework can be used in an elementary way to analyze the “full updates” version of
Hogwild!, while obtaining an improved bound compared to [1].

In the following, we denote by si the i-th sampled hyperedge by Alg. 1 that is assigned to some core, and
by x̂i ∈ Rd the contents of the shared memory read by this core; hence, the read variable vector “inherits”
the same iteration index as the sampled hyperedge si. Since the core reads only the coordinates indexed by
si, we need to clarify what is [x̂i]v for coordinates that are not in the hyperedge si, i.e. for v &∈ si. All the
bounds presented in this work hold even if [x̂i]v for every v &∈ si, is equal to any possible values stored in the
shared memory at position v during the processing of si. For the purpose of analysis, the reader can think
of a processor reading all coordinates v &∈ si, after sampling si. We note that we do not assume consistent
reads, i.e., the shared variables in memory can potentially change while a core is reading them.

Assumption 1. The iterate x̂i is independent of the sampled hyperedge si.

4

f(x) =
X

e2E
fe(xe)

e fe

Matrix Fact./Comp.
Graph cuts

Graph/text Classification
Topic Modeling

Dropout
…

Xinyi Chen

Xinyi Chen



SGD on sparse functions

Data points Model

1

2

3

4

Step1:
Pick random data point

2Sample sk

Xinyi Chen



SGD on sparse functions

1

2

Data points Model

3

4

Step 2:
Read Variables

x0

x4

x6

Read x

Xinyi Chen



SGD on sparse functions

1

Data points Model

3

4

2

x0

x4

x6

Step3:
Compute local function

rfsk(x)

Compute grad. 
of local loss



x x� �k ·rfsk(x)

SGD on sparse functions

1

Data points Model

3

4

2

Step4:
Update Model

Update Model

Xinyi Chen
Only calculate the gradient of the variable in function



Examples of Sparse Problems



Sparse Support Vector Machines
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Matrix Completion
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Graph Cuts

• Image Segmentation
• Entity Resolution
• Topic Modeling

minimizex
P

(u,v)2E wuvkxu � xvk1
subject to 1T

Kxv = 1 , xv � 0 , for v = 1, . . . ,D

�C

n
= O

�
avg deg

n

�

n=|E|



Sparsified BackProp

Xinyi Chen
Dropout: drop some nodes 



Challenges in Parallel SGD

x x� � ·rf1(x)

x x� � ·rfn(x)

...
...

shared variablesdata points

No conflict => 
2 parallel iterations = 2 serial iterations

Xinyi Chen



Challenges in Parallel SGD

x x� � ·rf1(x)

x x� � ·rfn(x)

...
...

shared variablesdata points

No conflict => Speedup



shared variablesdata points

Challenges in Parallel SGD

...
...

x x� � ·rf1(x)

x x� � ·rf2(x)

oops, conflicts

What should we do for conflicts?
Approach 1: Coordinate or Lock 
Approach 2: Don’t Care (Lock-free Async.)

Xinyi Chen
Shared RAM

Xinyi Chen
2个CPU更新了同一个参数，那么后面合并权重的时候，会出现覆盖的问题

Xinyi Chen
Who will define the sparse function?



Prior to 2011 Work
Long line of theoretical work since the 60s 

[Chazan, Miranker, 1969]

Foundational work on Asynchronous Optimization
Master/Worker model [Tsitsiklis, Bertsekas, 1986, 1989]

Recent hardware/software advances renewed the interest
Round-robin approach [Zinkevich, Langford, Smola, 2009]

Average Runs [Zinkevich et al., 2009], 
Average Gradients [Duchi et al, Dekel et al. 2010] 

Issue: Synchronization and comm. overheads

Many based on “Coordinate” or “Lock” approach
Why Coordinate or Lock?

Xinyi Chen



Impact

Downpour SGD,                      Project Adam use HOGWILD!
Renewed interest on async. optimization

HOGWILD! 2011
“Run parallel lock-free SGD without synchronization”
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for v in the support of f do
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Each processor in parallel

Xinyi Chen

Xinyi Chen
只更新f映射的那些参数



Speedups

Experiments run on 12 core machine  
10 cores for gradients, 1 core for data shuffling

SVM
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Challenges in Analysis



Challenges in Hogwild!

Processor 1

Processor 2

Processor P

...
...

Shared Memory

Issues:
1. updates can be old 

2. results can overwritten

Incompatible with classic SGD analysis

Xinyi Chen



Analyzing Asynchronous Schemes



A Noisy Lens 
for Asynchronous Algorithms

Main Idea

Perturbed Iterate Analysis for Asynchronous Stochastic Optimization 
[Mania, Pan, P, Recht, Ramchandran, Jordan, 2015]

Joint work with

Noisy viewpoint:
Asynchronous(Algo.( INPUT ))     Serial(Algo.(INPUT + Noise)⌘

Xinyi Chen
Noice的视角

Xinyi Chen

Xinyi Chen
扰乱的



HOGWILD! as noisy SGD

• Def: is the k-th sampled data point

• Fact: Cores don’t read “actual” iterates   
but “noisy iterates” 

• After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

Ex. 

sk

xk
x̂k

......

x1
x2

xd

f1
f2

fn

sample function fi

x = read shared memory

g = �� ·rfi(x)
for v in the support of f do

xv  xv + gv

Each processor in parallel

Xinyi Chen
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HOGWILD! as noisy SGD

• Def: is the k-th sampled data point

• Fact: Cores don’t read “actual” iterates   
but “noisy iterates” 

• After T processed samples, the contents of RAM are:
(atomic writes + commutativity)

• The algorithmic progress is captured by ``phantom” iterates

xk+1 = xk � � ·rfsk(x̂k)

Main Questions:
1) Where does noise come from?

2) How strong is it?
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x = read shared memory

g = �� ·rfi(x)
for v in the support of f do
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Each processor in parallel



Understanding Asynchrony Noise
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f1
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f3
Sample 2

Sample 1

Sample 3

timeline

“Serialized” Processing Timeline

Q: What causes asynchrony “noise”? A: “noisy 
reads” of the coordinates in the overlap x x� � ·rfek(x+ n)

Understanding Asynchrony Noise

Asynchrony noise is combinatorial 
coordinates in conflict can be as noisy as possible.

(no generative model assumptions)

CPU 1
CPU 2
CPU 3



Hogwild Rates: Proof Recap
Hogwild is equivalent to a noisy serial SGD

asynchrony noise affects rates, but if bounded, not by much

When core delay is less than                   , noise does not affect convergence     ⌧  n

2�av

Hogwild! Achieves linear speedups
*=in terms of worst case convergence



Convergence of Hogwild
PERTURBED ITERATE ANALYSIS 9

the same recursion (up to constants) as serial SGM. This directly implies the main
result of this section.

Theorem 3.4. If the number of samples that overlap in time with a single sample
during the execution of Hogwild! is bounded as

τ = O
(

min

{
n

∆C

,
M2

εm2

})

,

Hogwild!, with step size γ = εm
2M2 , reaches an accuracy of E‖xk − x∗‖2 ≤ ε after

T ≥ O(1)
M2 log

(
a0

ε

)

εm2

iterations.
Since the iteration bound in the theorem is (up to a constant) the same as that

of serial SGM, our result implies a linear speedup. We would like to note that an
improved rate of O(1/ε) can be obtained by appropriately diminishing stepsizes per

epoch (see, e.g., [15, 27]). Furthermore, observe that although the M2

εm2 bound on
τ might seem restrictive, it is—up to a logarithmic factor—proportional to the total
number of iterations required by Hogwild! (or even serial SGM) to reach ε accuracy.
Assuming that the average degree of the conflict graph is constant, and that we
perform a constant number of passes over the data, i.e., T = c · n, then τ can be as
large as Õ(n), i.e., nearly linear in the number of function terms.1

3.4. Comparison with the original Hogwild! analysis of [27]. Let us sum-
marize the key points of improvement compared to the original Hogwild! analysis:

1. Our analysis is elementary and compact, and follows simply by bounding the
Rj

0, R
j
1, and Rj

2 terms, after introducing the perturbed gradient framework of § 2.
2. We do not assume consistent reads: while a core is reading from the shared

memory other cores are allowed to read, or write.
3. In [27] the authors analyze a simplified version of Hogwild! where for each

sampled hyperedge only a randomly selected coordinate is updated. Here we analyze
the “full-update” version of Hogwild!.

4. We order the samples by the order in which they were sampled, not by
completion time. This allows to rigorously prove our convergence bounds, without
assuming anything on the distribution of the processing time of each hyperedge. This
is unlike [27], where there is an implicit assumption of uniformity with respect to
processing times.

5. The previous work of [27] establishes a nearly-linear speedup for Hogwild!

if τ is bounded as τ = O
(

4
√

n/∆R∆2
L

)

, where ∆R is the maximum right degree of

the term-variables bipartite graph, shown in Fig 3.1, and ∆L is the maximum left
degree of the same graph. Observe that ∆R · ∆2

L ≥ ∆L · ∆C, where ∆C is the
maximum degree of the conflict graph. Here, we obtain a linear speedup for up to
τ = O (min {n/∆C,M2/εm2}), where ∆C is only the average degree of the conflict graph
in Fig 3.1. Our bound on the delays can be orders of magnitude better than that
of [27].

4. Asynchronous Stochastic Coordinate Descent. In this section, we use
the perturbed gradient framework to analyze the convergence of asynchronous parallel

1Õ hides logarithmic terms.



Open Problems



Open Problems: Part 1
Assumptions: Sparsity + convexity => linear speedups

Only soft sparsity needed =  uncorrelated sampled gradientsMaybe we should featurize dense ML  Problems,  
so that updates are sparse

O.P. : 
Fundamental Trade-off

Sparsity vs Learning Quality?

O.P. : 
Hogwild! On Dense Problems



Open Problems: Part 2
=

- What we proved:

- What we really care about:

speedup =
Time of serial A to accuraccy ✏

Time of parallel A to accuraccy ✏

worst case speedup =
bound on #iter of SGD to ✏

bound on #iter of Parallel SGD to ✏

O.P. : 
True Speedup Proofs for Hogwild

O.P. : 
Guarantees for Nonconvex Problems?

Holy Grail



Open Problems: Part 3
Hogwild! Algorithms great for Shared Memory Systems

- Issues when scaling across nodes, due to comm

- Similar Issues for Distributed:

O.P. : 
How to provably scale on NUMA?

O.P. : 
Sync vs Async is still open

sp
ee

du
p

#threads

Xinyi Chen
可查验地



Reproducible Models



Reproducibility
- HOGWILD! Models are not reproducible

- Each training session has inherent “system” 
randomness

- Does not allow to recreate models if needed

- Barrier for accountability and reproducibility

- How can we resolve it?

Xinyi Chen

Xinyi Chen
因为结束时间随机，覆盖的顺序不一样

Xinyi Chen
可解释性



Presentation Suggestion
- Suggestion: Minibatch, Hogwils Analysis? Hadoop?



Next Week’s Presentation
- Polyak, Boris T. "Some methods of speeding up the convergence of iteration 

methods." Ussr computational mathematics and mathematical physics 4.5 (1964): 
1-17.

- Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep 
learning." International conference on machine learning. PMLR, 2013.

- Why Momentum Really Works, Distill, [Goh, 
2017]. http://doi.org/10.23915/distill.00006

- Martens, James, and Roger Grosse. "Optimizing neural networks with kronecker-
factored approximate curvature." International conference on machine learning. 

PMLR, 2015. 

http://doi.org/10.23915/distill.00006
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